
Lift-offline: Instruction Lifter Generators

Nicholas Coughlin1,2[0000−0001−8758−0666], A. Michael1,2[0009−0000−7316−9112],
and Kait Lam1,2[0009−0001−2599−2259]

1 Defence Science and Technology Group, Australia
2 School of Electrical Engineering and Computer Science,

The University of Queensland, Australia
n.coughlin@uq.edu.au

Abstract. Binary analysis techniques depend on instruction lifters to
map instruction encodings to their semantic effects. Existing work has
demonstrated automatic methods to extract such semantics from trust-
worthy architecture specifications, on a per-instruction basis. We extend
these results to extract the semantics of all instructions at once, effec-
tively generating an instruction lifter. We attain this result through the
offline partial evaluation of formal architecture specifications, along with
their analysis via instruction opcode sensitive abstract domains. To illus-
trate the approach, we generate a generic instruction lifter for ARMv8
and specialise it to a series of use cases. In addition to the static analysis
of architecture specifications, this approach permits the static analysis
of the generated lifter. We exploit this to establish bounds on lifter be-
haviours and its produced semantics.

1 Introduction

Binary analysis is crucial for applications where reasoning over source program
representations is impossible or insufficient. For instance, the source program
may simply be unavailable or the desired analysis outcomes may be invalidated
by compilation [13,19,4,5]. Direct analysis of binary objects is often infeasible
due to their complex and concise encoding. Consequently, most approaches first
reconstruct internal representations (IRs) of their effects, designed to be more
amenable to software analysis [7,46,3]. A common component of this translation
is an instruction lifter, capable of mapping encoded machine instructions, i.e.,
instruction opcodes, into IR snippets. Through the analysis of other aspects of
the binary, such as memory initialisation and control flow [32,14], these snippets
are composed into an IR program, representing a binary’s full behaviour.

mailto:n.coughlin@uq.edu.au

2 Nicholas Coughlin, A. Michael, and Kait Lam

Evidently, the soundness of any subsequent analysis is dependent on the cor-
rectness of this initial reconstruction. However, correct instruction lifters are
notoriously difficult to develop [2,11]. Hardware vendors often only specify in-
struction behaviours as informal prose and pseudocode [1,18], leading to a labo-
rious encoding process to capture their semantics. Given the breadth of instruc-
tions supported by modern architectures and the minor variations in behaviours
across processor generations, it is unsurprising that a manual encoding process
may introduce errors and/or only implement a subset of instructions. These
concerns have motivated a series of research outcomes exploring and compar-
ing independently derived instruction lifters, identifying a plethora of encoding
mistakes [22,25].

To address these issues, existing work has explored the extraction of instruc-
tion semantics from formal architecture specifications [33,41,25]. These formal
specifications, made available either by hardware vendors [38] or developed in-
dependently [15,17], encode the operational semantics of an architecture’s in-
structions in a high-level language. They have been leveraged for various verifi-
cation tasks concerned with hardware behaviours [24,27]. Evidently, their wide
use lends credibility to their encoding of hardware behaviour [39]. Existing se-
mantic extraction techniques reduce these formal specifications given a concrete
instruction opcode and, potentially, additional constraints on the architecture
state. Through aggressive simplification, based on SMT solving [41] and partial
evaluation [25], the residual specification concisely represents the instruction’s
effects.

Despite the soundness benefits of these results, their integration into existing
binary analysis projects remains a significant challenge. For instance, it is likely
necessary to translate the extracted representation into the IR anticipated by
the analysis project, possibly crossing language runtimes in the process. Given
the semantics of these representations are rarely formalised [35], it is difficult
to establish the validity of this translation. Moreover, the performance over-
head of reducing the formal specification and its subsequent translation may be
prohibitive for certain applications.

A further issue with existing semantic extraction techniques concerns their
dependence on a concrete instruction opcode for simplification. As a conse-
quence, it is difficult to reason over the results of their simplifications for all
instruction opcodes. For instance, it may not be statically obvious what lan-
guage structures and architecture state could be present in the residual, sim-
plified representations. Additionally, certain instruction specifications may be
beyond the capabilities of the extraction process, leading to failures or sound-
ness issues when such instruction opcodes are processed. While these issues can
be partially resolved through testing, i.e., applying the extraction process to a
series of instruction opcodes, full coverage is difficult to establish.

We contribute the novel notion of instruction lifter generators to address
these shortcomings. Under this approach, an instruction lifter is automatically
extracted from the formal architecture specification, rather than simply the se-
mantics for a single instruction opcode. We attain this result through the appli-

Lift-offline: Instruction Lifter Generators 3

if enc AND 0x80 then
R3 = R1 + R2

else
R3 = R1 - R2

Listing 1.1: Architecture
Specification for Opcode enc

R3 = R1 + R2

Listing 1.2: Residual
for enc == 0x8F

if enc AND 0x80 then
gen_store(R3, gen_add(gen_load(R1), gen_load(R2)))

else
gen_store(R3, gen_sub(gen_load(R1), gen_load(R2)))

Listing 1.3: Generated Lifter

simplify given
enc == 0x8F

offline
transform

evaluate given
enc == 0x8F

cation of offline partial evaluation techniques [21]. Note that this work aims to
produce semantics for a single instruction opcode, with the complexities of com-
posing these to obtain semantics for the program as a whole and reconstructing
language abstractions left to subsequent analysis [32,14].

To illustrate, consider the example architecture specification in Listing 1.1, in
which a bitwise test of the instruction opcode enc determines whether an addition
or subtraction operation should be performed over registers R1, R2 and R3.
Existing extraction methods simplify based on a concrete value for enc to attain
a residual form, as illustrated by Listing 1.2 when enc == 0x8F. Under the offline
approach the architecture specification is instead transformed into a program
that constructs this residual form for an arbitrary value of enc, as demonstrated
in Listing 1.3. Construction of the residual form is implemented via a set of IR
building primitives, illustrated here as gen_ prefixed operations. Evaluation of
this transformed program for a value of enc will return a corresponding residual
representation, e.g., also producing Listing 1.2 when enc == 0x8F.

The result of the offline transform corresponds to an instruction lifter, return-
ing IR for concrete values of the instruction opcode. This is attained by statically
delineating Listing 1.1 into notions of lifting and residual effects, where the for-
mer can be fully evaluated given an instruction opcode (e.g. enc AND 0x80) but
the latter must appear in the residual output (e.g. R1 + R2). This static delin-
eation is convenient for subsequent analysis and transformation, addressing the
shortcomings of existing techniques. For instance, the generated lifter may be
transpiled to new languages and transformed to construct alternative IRs, elim-
inating the need to cross language runtimes and translate IR representations
per-instruction.

However, the static delineation may also lead to more complex residual rep-
resentation relative to existing extraction approaches. Observe that existing ap-
proaches simplify given a concrete instruction opcode, leading to effective reduc-
tions for simple transforms such as constant propagation. Such reductions aren’t
as trivially apparent for the offline transform, as it must determine residual
representations for arbitrary instruction opcodes.

4 Nicholas Coughlin, A. Michael, and Kait Lam

Given such trade-offs, this work evaluates the feasibility of instruction lifter
generators relative to existing extraction techniques. To attain this, we imple-
ment the necessary analyses and transforms for an encoding of the ARMv8
architecture [38] and compare with an existing extraction method [25] for said
encoding. To address shortcomings with the approach, we contribute analyses
that are instruction opcode sensitive to improve reasoning and simplification in
the presence of arbitrary instruction opcodes. Moreover, we evaluate the ver-
satility of the approach by generating lifters in three distinct languages, each
producing outputs in distinct IRs. We further illustrate the static nature of the
approach by analysing the produced lifters, establishing properties such as the
absence of violated invariants, lower bounds on supported instructions and upper
bounds on the complexity of the output representation.

We detail the formalisation of ARMv8 in Section 3, along with the existing
semantic extraction technique, which we build on and compare with, in Section 4.
In Section 5 we detail our offline partial evaluation approach, and illustrate its
versatility through three distinct specialisations in Section 6. Following this, we
evaluate the produced lifters across a series of metrics and detail bounds on
their behaviour in Section 7. Finally, we explore related work and conclude in
Sections 8 and 9.

2 Preliminaries

We consider a standard type system throughout this work, with judgements of
the form x : A, representing x of type A. Moreover, we represent a program as
f : A → B, consuming arguments of type A and producing results of type B,
with program application represented as f(x) : B. We additionally consider the
encoding of programs, such that fL : {A → B}L corresponds to the encoding of
a program of type A → B in language L. Therefore, a program g that generates
programs of type B → C in language L, given some A, would have a type g : A →
{B → C}L. The conversion of such a representation into an executable form is
denoted as ⟨fL⟩ : A → B. For simplicity, we assume all language representations
operate over equivalent types.

3 ARM Specification Language (ASL)

The ARM Specification Language (ASL) is a language for formally specifying
the semantics of the ARM architecture. It grew from a formalisation of the
pseudocode within the Architecture Reference Manual, and now its scope has
grown to include description of almost the entire ARM system architecture.
Since v8.2, ARM has used ASL within their machine-readable specifications
which are published alongside the traditional natural language descriptions. The
availability of such a trustworthy and authoritative architecture model, in a form
intelligible by computer programs, has prompted development of numerous tools
which use ASL as a foundation for verification and analysis.

Lift-offline: Instruction Lifter Generators 5

In terms of language design, ASL borrows from both high-level and low-level
languages and makes design decisions with its domain-specific use in mind. In
addition to ordinary procedural programming features, some of its more unique
features are:

– constructs for defining decode trees and instruction semantics,
– a selection of types catering to hardware specification: integers, real num-

bers, dependently-sized bitvectors, registers, arrays, tuples, and records are
available for use,

– operator and function overloading, as well as overloaded array read/write
syntax,

– bit mask values for use in pattern matching and decoding,
– formal reference parameters, and
– exception handling.

The architecture specifications are organised into instruction sets. Each instruc-
tion set (e.g. A64, A32) has a decoder which examines the opcode pattern, then
dispatches to a particular instruction encoding family. An instruction family de-
scribes the semantics for a number of related instructions. Instructions within a
family share roughly the same ASL semantics, with minor differences handled
by conditionals.

Consider the example of mov x1, x2 (with bytecode E1 03 02 AA). In the
architecture, this encoding is an alias for orr x1, xzr , x2 so the A64 decoder
maps this to aarch64_integer_logical_shiftedreg . This instruction family, shown
in Figure 1, describes the and/or/eor instructions with shifted register operands.
We will use this opcode and its instruction family as a running example through
this paper. The instruction’s functionality may be simple, but this makes it
useful test to demonstrate simplification and reduction of ASL.

In Figure 1’s __decode and __execute sections, we see some of the difficul-
ties which might arise when using these semantics for binary analysis work. The
machine-readable specification is extensive and this instruction is only a simple
bitwise operation, but we can already notice overloaded array syntax in X[],
parsing of enum types and arbitrary-precision integers, and several subroutine
calls with their own internal complexity. The encoding also handles permutations
of data size, operation, shift types, and flag behaviour.

Within the specification, this generality is advantageous, enabling the specifi-
cation to define a breadth of instruction mnemonics without excessive repetition.
However, when we require the semantics for a particular opcode, this becomes
a burden. With these factors in mind, directly translating ASL into an analy-
sis tool’s input (e.g. theorem prover definitions or intermediate representation)
would be unwieldy and ineffective, quickly ballooning the amount of code which
the tool must reason about.

3.1 Formalisation

The ASL specification is sufficiently detailed to evaluate binary programs [38],
primarily consisting of an outer evaluation loop that loads the next instruction

6 Nicholas Coughlin, A. Michael, and Kait Lam

1 __encoding aarch64_integer_logical_shiftedreg
2 __instruction_set A64
3 __field sf 31 +: 1, opc 29 +: 2, shift 22 +: 2, N 21 +: 1,
4 Rm 16 +: 5, imm6 10 +: 6, Rn 5 +: 5, Rd 0 +: 5
5 __opcode ’xxx01010 xxxxxxxx xxxxxxxx xxxxxxxx’
6 __decode
7 (∗ parse bit fields into integers ∗)
8 integer d = UInt(Rd); integer n = UInt(Rn); integer m = UInt(Rm);
9 (∗ determine data size and operation ∗)
10 integer datasize = if sf == ’1’ then 64 else 32;
11 boolean setflags; LogicalOp op;
12 case opc of
13 when ’00’ => op = LogicalOp_AND; setflags = FALSE;
14 when ’01’ => op = LogicalOp_ORR; setflags = FALSE;
15 when ’10’ => op = LogicalOp_EOR; setflags = FALSE;
16 when ’11’ => op = LogicalOp_AND; setflags = TRUE;
17

18 if sf == ’0’ && imm6[5] == ’1’ then UNDEFINED;
19 (∗ decode shift parameters, using helper method ∗)
20 ShiftType shift_type = DecodeShift(shift);
21 integer shift_amount = UInt(imm6);
22 boolean invert = (N == ’1’);
23

24 __execute
25 (∗ load registers, X[n] is overloaded to return zeros if n == 31 ∗)
26 bits(datasize) operand1 = X[n];
27 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
28

29 if invert then operand2 = NOT(operand2);
30 (∗ perform bitwise operation ∗)
31 case op of
32 when LogicalOp_AND => result = operand1 AND operand2;
33 when LogicalOp_ORR => result = operand1 OR operand2;
34 when LogicalOp_EOR => result = operand1 EOR operand2;
35 (∗ return results through output register and flag registers ∗)
36 if setflags then
37 PSTATE.[N,Z,C,V] = result[datasize-1]:IsZeroBit(result):’00’;
38 X[d] = result;

Fig. 1: Example ASL for the logical (shifted register) instruction family, including
the mov <Xd>, <Xm> instructions.

Lift-offline: Instruction Lifter Generators 7

opcode given the current program counter PC, decodes it to an instruction fam-
ily, and then evaluates the instruction family. The evaluation of an instruction
family consists of the evaluation of a series of ASL statements, as illustrated in
Figure 1, culminating in a series of modifications to the architecture state, such
as updating registers, flags or the PC in the event of a branch instruction. As
this paper focuses on the semantics of an individual instruction, we ignore the
outer evaluation loop and simply consider the decoding and evaluation stages
for a given instruction opcode. Abstractly, we refer to the composition of these
structures as:

SpecASL = {(Opcode× State) → State}ASL (1)

corresponding to a program, represented in ASL, that consumes an Opcode and
a State, the architecture’s notion of an instruction opcode and its execution state
respectively, producing a new State, representing the state after evaluating the
instruction.

We introduce Eff L = {State → State}L, to concisely represent an instruc-
tion’s effects as a program in language L. We define an instruction lifter, that
produces semantics in language L, as follows:

LifterL = Opcode → Eff L (2)

This paper describes an approach of deriving LifterL from SpecASL, over
the full ASL language. This is achieved through a variety of static analyses
and transforms operating over ASL statements, of type Stmt. For illustrative
purposes, we describe these operations in terms of assignment, conditional and
assertion statements. For instance, x = e assigns the result of expression e to
x and assert b asserts that the expression b evaluates to true. Additionally,
if b then t else f evaluates the expression b and performs either statement t
or f accordingly.

The program operates over a standard state, mapping variables to values.
Expressions are assumed to be pure, i.e., their evaluation does not alter state.
We assume a function vars(e), that returns the free variables of expression e.

4 Online Partial Evaluation

Partial evaluation is the program transformation technique of specialising a pro-
gram to a set of statically known values ahead-of-time. It propagates these static
values as much as possible, allowing it to eliminate branches and unreachable
code where possible. For values not known ahead-of-time, partial evaluation will
emit a residual program to perform the remaining computation. The behaviour
of the residual program and the original program should be identical when given
the same set of inputs.

In prior work, we have developed ASLp [25], an online partial evaluator for
ASL. Here, partial evaluation allows reducing the full architecture specification—
necessarily large due to its fidelity and breadth—into a simpler form suitable

8 Nicholas Coughlin, A. Michael, and Kait Lam

for binary analysis purposes. ASLp takes as input the architecture specifica-
tion files and an instruction opcode, then partially evaluates the specification
to return a concise summary of that instruction’s semantics. The semantics are
returned in reduced ASL, a subset of ASL which aims to be trivially usable with
analysis tools. We encode this process formally as ASLp : (SpecASL, Opcode) →
Eff rASL, where rASL represents reduced ASL. Consequently, correctness of ASLp
is phrased as follows, equating the final states for any given opcode and initial
state:

∀spec : SpecASL, op : Opcode, st : State ·
⟨ASLp(spec, op)⟩(st) = ⟨spec⟩(op, st) (3)

4.1 Implementation

At a high level, the online partial evaluation is built by mirroring the evaluation
functions of an existing interpreter for ASL, ASLi [40]. It simply modifies the
methods to operate on symbolic values instead of concrete bitvector values. A
symbolic value is a disjoint union of three possible states:

(1) Known literal values,
(2) Pure expressions, and
(3) Unknown.

Known represents quantities that are known at lift-time (during the execution
of the lifter). Unknown represents values which cannot be known until run-
time (the context where the resulting semantics are given meaning, e.g. within
an analysis tool). These expressions are emitted into the residual program as
a computation followed by an assignment into a fresh variable. Hence, Pure
encodes pure expressions of these reified unknown values.

These symbolic values enable significant simplification of the architecture
specification. If all values within an expression are known, the expression can
be computed ahead-of-time using ASLi’s evaluation methods. However, the bulk
of the simplification occurs with pure expressions. Although these cannot be
fully evaluated, they can be simplified by applying algebraic rules. This includes
ordinary mathematical identities on integers and booleans, as well as more so-
phisticated bitvector transformations (e.g. identifying definitely set/unset bits
and coalescing repeated slices of the same expression).

After partial evaluation, post-processing passes are run to further simplify
the residual program. Copy propagation, dead-code elimination, and common
subexpression elimination passes are used, as in conventional compiler optimisa-
tion. Specialised passes translate particular ASL structures into more primitive
operations, reducing the implementation burden on downstream applications.
These include converting arbitrary-precision integers to sufficiently wide bitvec-
tors, lowering ASL enum and register types to ordinary bitvectors, and, where
slices are lift-time unknown, translating them to shift/truncate.

Given these transforms, ASLp is able to produce output which is natural and
concise—similar in style and complexity to a hand-written lifter but with the

Lift-offline: Instruction Lifter Generators 9

trustworthy foundations of the official specification. For the example mov x1, x2,
ASLp reduces the code of Figure 1 into only: _R[1] = _R[2]. 3

The correctness of the partial evaluator has also been validated against the
ASLi interpreter with differential testing, and against other lifters by translation
validation [25]. These efforts ensure ASLp’s output can be trusted as a faithful
translation of the ARM specification.

4.2 Limitations

Unfortunately, limitations of ASLp reveal themself when attempting to integrate
it within other tools. The current partial evaluation is built with the core as-
sumption that it processes one opcode at a time—the resulting semantics are
specialised to describe only that instruction.

Therefore, downstream projects handling arbitrary opcodes are forced into
a tight coupling with the ASLp program; users must call the partial evaluation
for each instruction, and ASLp (with the complete ASL specifications) must
be distributed alongside the user’s program. This complicates the development
processes and inflicts a considerable runtime cost onto end-users. Moreover, the
single-opcode limitation renders caching, the typical mitigation for runtime costs,
almost entirely ineffective.

Separately, it is also difficult to communicate the reduced semantics from
ASLp to the program using it. ASLp returns its reduced ASL semantics as a
textual encoding of the abstract syntax tree and projects using ASLp are required
to implement and maintain their own parser. After parsing, the result must be
manually translated into a useful intermediate representation. The downstream
projects must ensure, manually, that their parser and translator can handle the
range of possible reduced ASL statements.

At present, this is hindered by the lack of a comprehensive description of
ASLp’s output and the inherent complexity of developing such a description. In
general, reasoning about the behaviour of ASLp across the whole instruction set
is not straightforward. Due to its on-demand partial evaluation, testing is the
only possible path towards such a goal. While the differential testing of ASLp
includes ∼ 250, 000 opcodes, this remains a small subset of the instruction set.
A more robust approach would need to ensure path coverage, possibly by use of
symbolic execution to discover candidate test cases. Despite the possibility, the
work required would be substantial.

5 Offline Partial Evaluation

Offline partial evaluation [21] represents an alternative specialisation technique,
capable of addressing limitations encountered with the online approach. Given
a program and a classification of its arguments as either static or residual, the
offline approach statically transforms this program, staging it such that compu-
tations based on static arguments may be evaluated first. For instance, given a
3 The _R array is the register file, referenced indirectly by the X[] accessor in Figure 1.

10 Nicholas Coughlin, A. Michael, and Kait Lam

program f where f : {(A × B) → C}L and A is marked as static, this process
produces a new program f ′, such that f ′ : {A → {B → C}L}L. The resulting
program f ′ can be considered a specialiser for f , producing specialised variants
of f given some concrete value for the argument A. Let offline denote the process
of transforming programs of the form f to f ′.

In contrast to the online approach, where static arguments must be in-
stantiated to derive residual programs, this approach delineates between static
and residual programs purely based on the initial argument classification via
a binding-time analysis [36], introduced later in Section 5.1. While more com-
plex to implement [9], the resulting specialiser removes the need to simplify and
reduce the original program for each static argument instantiation. Moreover,
the specialiser is amenable to static analysis, allowing for reasoning over and
modification of its specialising effects.

To illustrate, recall Listing 1.3 which may be considered a specialiser for
Listing 1.1. In this setting, the instruction opcode enc is marked as static, re-
sulting in any operations based purely on enc also being considered static, e.g.,
enc AND 0x80. Computations based on other state, such as R1 and R2, must
instead be residual. Such residual operations are transformed into IR building
primitives to effectively defer their evaluation, discussed later in Section 5.2.

We consider the application of offline partial evaluation to architecture spec-
ifications with the instruction opcode marked as static:

offline(SpecL) = offline({(Opcode× State) → State}L) from Eq. 1
= {Opcode → {State → State}L}L by dfn. of offline
= {LifterL}L by Eq. 2 & dfn. of Eff L

Therefore, offline partial evaluation applied to SpecASL will obtain a lifter
program of type {LifterASL}ASL. We implement aslgen, an instance of offline
for ASL specifications, to evaluate the feasibility of such a transform4. In prac-
tice, this process consumes an ASL specification and generates a lifter program
in reduced ASL, such that aslgen : SpecASL → {Lifter rASL}rASL. Similar to
Equation 3, we phrase correctness in terms of the final states relative to the
interpretation of the original specification:

∀spec, op, state · ⟨⟨aslgen(spec)⟩(op)⟩(state) = ⟨spec⟩(op, state) (4)

The lifter generated by aslgen(spec) produces simplified representations of
an instruction’s semantics given its opcode. Note that the generated lifter itself
and its emitted semantics are encoded as reduced ASL programs. As discussed
in Section 4.2, this representation presents a series of difficulties. Therefore, we
convert this representation into forms more suited to integration through a series
of backend generators, genL

IR : {Lifter rASL}rASL → {Lifter IR}L. The function
genL

IR transpiles the output of aslgen to a program in language L, capable of
constructing a semantically equivalent representation of instruction behaviour

4 Available within the main ASLp repository, at https://github.com/UQ-PAC/aslp.

https://github.com/UQ-PAC/aslp

Lift-offline: Instruction Lifter Generators 11

aslgen
SpecASL

genOCaml
rASL

genC++
LLVM

genScala
BASILvalidate

{LifterrASL}rASL

Lifter rASL

OCaml

LifterLLVM

C++

LifterBASIL

Scala

Opcode

lift-time run-timegen-time

Eff rASL

Eff LLVM

Eff BASIL

Fig. 2: Overview of the lifter generator process and its uses.

in language IR. Formally, we phrase its correctness as:

∀lifter , op, state · ⟨⟨genL
IR(lifter)⟩(op)⟩(state) = ⟨⟨lifter⟩(op)⟩(state) (5)

Note the use of two, possibly distinct, languages: L and IR, the former de-
scribing the lifter and the latter describing instruction behaviour. Offline partial
evaluation, through its delineation of static and residual computations, enables
these two to be distinguished and transformed independently. For instance, it is
possible to transform solely the lifter language L, producing a OCaml program
that generates reduced ASL representations of instruction opcode semantics. Al-
ternatively, one can transform both, producing a C++ program that constructs
LLVM IR to represent instruction semantics, which may be compiled and linked
directly into some larger C++ binary analysis project. Additionally, this ap-
proach enables static analyses to be applied to the results of the lifter generator
aslgen, establishing properties over its produced lifters.

The overall process can be seen in Figure 2. We refer to the lifter generation
process as gen-time, beginning with lifter generation through aslgen, followed
by analysis and translation of this lifter via some genL

IR. This lifter is later
executed, given some language runtime for L and concrete instruction opcode.
This stage is considered lift-time, with the produced semantics considered run-
time, corresponding to concepts from Section 4.

This section details the aslgen process, first covering the transforms required
to perform offline partial evaluation, followed with additional stages to improve
qualities of the produced lifter. Moreover, we cover static validation of the pro-
duced lifter, bounding its behaviours, in Section 5.5. The eventual conversion of
these results into executable lifters is covered in Section 6.

5.1 Binding-time Analysis

In the context of instruction lifter generation, binding-time analysis is tasked
with delineating computations between lift-time and run-time, i.e., identifying

12 Nicholas Coughlin, A. Michael, and Kait Lam

which expressions could be evaluated if the instruction opcode was known. These
results are used to construct the lifter, detailed later in Section 5.2. The anal-
ysis considers the syntactic dependencies between expressions, similar to taint
analysis, such that operations syntactically independent of run-time values are
considered lift-time.

We consider a two-value lattice, Time, for the abstract value domain, consist-
ing of points lift and run, such that lift ⊏ run. Informally, lift denotes the value
will be known at lift-time, whereas run denotes it may not be. Consequently,
the transfer function for an expression in this domain must produce a lift result
only if all arguments to the expression are lift. The abstract state st tracks such
a value for each variable, i.e., st : V ar → Time.

The abstract state must additionally consider the influence of run-time values
on control flow. For instance, given a branch condition based on run-time state,
it is not possible to determine at lift-time whether any assignments guarded by
the branch should be evaluated. The abstract state tracks an additional value,
cond : Time, capturing whether control flow to a statement is influenced by run-
time values. The analysis operates over the product of these two abstractions,
i.e., (cond, st) : Time × (V ar → Time). These behaviours are evident in the
transfer function, tfbta, for assignment and if statements:

tfbta(x = e)(cond, st) = (cond, st[x := cond ⊔ time(e)(st)])
tfbta(if b then t else f)(cond, st) = let cond′ = cond ⊔ time(b)(st) in

let (_, stt) = tfbta(t)(cond′, st) in
let (_, stf) = tfbta(f)(cond′, st) in
(cond, stt ⊔ stf)

where f [x := e] is a function update, and time(e)(st) returns run if there exists
a variable v in vars(e) such that st(v) = run.

Note that, once control flow is no longer dependent on a condition, i.e, at the
join after an if statement, the value of cond is reverted to remove the condition’s
influence. This is trivially implemented over ASL, due to its limited control flow.

This analysis is applied inter-procedurally, with specialisation for calls based
on the classification of arguments and control flow dependence. In this setting,
calls are specification constructs in ASL and do not correspond to the procedural
abstractions of a binary program.

Evidently, this analysis will under-approximate values known at lift-time, due
to its reliance on syntactic dependencies. For instance, consider the expression
x - x. The analysis, as described, will consider this expression as run given x is
run. However, the expression is trivially 0 at lift-time, regardless of the value of
x. Rather than embedding such cases into the binding-time analysis, we re-use
the existing online partial evaluation pass (Section 4) before this analysis, but
without a concrete instruction opcode. Recall that the online partial evaluator
tracks and simplifies pure, symbolic expressions. Consequently, it may reduce
x - x to 0 before binding-time analysis, along with various other cases.

Lift-offline: Instruction Lifter Generators 13

5.2 Run-time Conversion

The results of binding-time analysis determine which program constructs, e.g.,
variables, control flow and expressions, must be placed in the residual program.
Given this information, it is possible to transform the analysed program into
a specialiser, such that these residual constructs are collected into a residual
program as the specialiser executes. In the context of instruction lifters, this
corresponds to the lifter building some representation of an instruction’s seman-
tic effects.

if b then t else f
⇝

(t_branch,f_branch,join) =
gen_if_stmt(runtime_b);

switch_to(t_branch);
runtime_t;
switch_to(f_branch);
runtime_f;
switch_to(join);

Fig. 3: Conversion of run-time
if statement, where runtime_e
refers to the run-time conversion
of e.

To attain this, we convert all program
constructs that are influenced by run, i.e.,
run-time constructs, into calls against an IR-
building interface (IBI). A series of assump-
tions and observations are made to simplify
this transformation process and the IBI de-
sign. First, the IBI is assumed to construct IR
with equivalent semantics to reduced ASL.
For instance, the addition in Listing 1.1 is
converted into a call to build a semanti-
cally equivalent addition IR construct in List-
ing 1.3. Hence most run-time constructs, such
as primitive operations and variables, are
simply transformed into their corresponding
IBI calls. Second, the run-time constructs ap-
pear in the analysed program in evaluation
order. Consequently, their in-place transfor-
mation will result in calls to the IBI also in evaluation order. To leverage this
observation, the IBI is assumed to implicitly maintain a writing reference point,
generally referring to the end of the actively constructed IR. A new construct
is implicitly introduced at this writing reference point, with the reference point
then updated to point after it.

Therefore, most IBI calls do not need to consider their placement in the
IR, as this is handled implicitly. However, this approach fails when considering
run-time control flow, where newly built constructs may need to be placed on a
specific path. To address this, the IBI provides the means to build empty control
flow structures and refer to their internal locations. To illustrate, consider the
transformation of an if statement in Figure 3, where b is influenced by run-
time state, requiring a run-time branch. The call to build such a structure,
gen_if_stmt(), returns reference points to its internal locations: the true branch,
the false branch and the join. The IBI provides the means to switch between these
locations, ensuring structures are placed on appropriate branches and returning
to the join once finished.

The process is further illustrated in Figures 4a and 4b. Through binding-
time analysis, op__1 and setflags__1 are considered lift as they are derived
from enc, the instruction opcode, which is trivially lift . Consequently, the if
statements can all be resolved at lift-time. These constructs are therefore not

14 Nicholas Coughlin, A. Michael, and Kait Lam

modified, implying their evaluation at lift-time. However, result__1 is considered
run, as X.read52__2 is derived from a register read, corresponding to run-time
global state. Therefore, the expressions written to result__1 are transformed
into a series of semantically equivalent IBI calls, prefixed with gen_. The final
register write, modifying an element of _R[], is also considered run and updated
accordingly.

1 if eq_bits(op__1, ’00’) then
2 result__1 = and_bits(X.read52__2, result__2);
3 else
4 if eq_bits(op__1, ’10’) then
5 result__1 = or_bits(X.read52__2, result__2);
6 else
7 if eq_bits(op__1, ’01’) then
8 result__1 = eor_bits(X.read52__2, result__2);
9 else
10 throw UNSUPPORTED;
11 if setflags__1 then
12 ...
13 else
14 if ne_bits(enc[0+:5], ’11111’) then
15 _R[cvt_bits_uint(enc[0+:5])] = ZeroExtend(result__1, 64);

(a) Representation of mov instruction semantics after initial partial evaluation.

1 if eq_bits(op__1, ’00’) then
2 result__1 = gen_and_bits(X.read52__2, result__2);
3 else
4 if eq_bits(op__1, ’10’) then
5 result__1 = gen_or_bits(X.read52__2, result__2);
6 else
7 result__1 = gen_eor_bits(X.read52__2, result__2);
8 if setflags__1 then
9 ...
10 else
11 if ne_bits(enc[0+:5], ’11111’) then
12 gen_array_store(_R, cvt_bits_uint(enc[0 +:5]), gen_ZeroExtend(result__1, ...));

(b) After aslgen analyses and run-time transforms. Expressions that must be run-
time are converted to IBI calls (italicised). Trivial assertions and unreachable code are
removed through opcode-sensitive dead-code elimination and value analysis.

Fig. 4: Comparison of instruction family aarch64_integer_logical_shiftedreg .

5.3 Opcode-Sensitive Abstract Domains

The application of binding-time analysis and run-time conversion are sufficient
to generate a lifter, however, the semantics produced by this lifter will likely

Lift-offline: Instruction Lifter Generators 15

be overly verbose and complex. This work aims to generate lifters that produce
semantics as simple as those derived from the online lifter discussed in Section 4.
This is challenging, given the online approach is capable of specialising given a
concrete instruction opcode. Therefore, trivial optimisations obtain a significant
specialising effect.

if enc[20] == enc[10] then
temp = X[0];

else
temp = 0;

Fig. 5: Zero register example.

To illustrate, consider Figure 5, where enc
corresponds to the instruction opcode, en-
coded as a bitvector, and X[] an array of reg-
isters. This is a generalisation of a common
pattern found in the ARMv8 ASL specifica-
tion where arguments to operations select be-
tween a register or a zero constant based on
the instruction opcode. The subsequent use
of temp for some calculation is implied here.

Given a concrete value for enc, online partial evaluation can trivially reduce
this branch. In the event of a false outcome, temp will be fixed to 0. As temp
will be subsequently used as the argument to some series of operations, a 0 value
will likely lead to substantial simplifying effects via transforms such as constant
propagation. For offline partial evaluation, however, no immediate reduction of
the branch is possible given enc is not known. Therefore, any reasoning over
temp’s value subsequent to this branch must consider the possibility of either a
register value or a zero constant.

The difference between online and offline can be purely attributed to enc,
as knowledge of this value distinguishes the two by definition. We address this
difference by hoisting the opcode into the abstract domains of analyses applied
in online partial evaluation, obtaining opcode-sensitive variants.

To illustrate our solution, consider an abstract domain (A,⊏) with a transfer
function tf : Stmt → A → A. We derive an opcode-sensitive variant via a
function lattice (Opcode → A,⊏op) and transfer function tfop, with standard
point-wise generalisations, such that, for x, y : Opcode → A,

x ⊏op y = ∀i ∈ Opcode · x(i) ⊏ y(i) (6)
tfop(s)(x) = λop · tf(s[op/enc])(x(op)) (7)

where s[x/y] corresponds to the statement s with variable y replaced by expres-
sion x.

Application of the resulting domain corresponds to the analysis of the spec-
ification for all instruction opcodes simultaneously. While simply expressed, its
practical implementation is non-trivial given the breadth of instructions sup-
ported by an architecture.

To obtain practical analyses, we make the following observations. First, in-
structions are grouped into families, based on similarities between their be-
haviours. Within these families only a limited set of instruction opcode bits
influence their behaviour. Second, the instruction opcode generally influences be-
haviour via boolean operations over its bits, as seen in Figure 5. Consequently,
we consider the analysis of individual instruction families to eliminate depen-

16 Nicholas Coughlin, A. Michael, and Kait Lam

dence on a majority of instruction bits. Moreover, we encode functions of type
Opcode → A as multi-terminal binary decision diagrams (MTBDDs) [8,16], given
such representations efficiently and canonically encode boolean expressions of the
style seen in instruction families.

enc[20]

enc[10]enc[10]

0⊤

01

1

00

1

Fig. 6: MTBDD en-
coding of temp.

MTBDD-based encodings are well known in the con-
text of abstract interpretation [28,31], with efficient imple-
mentations [20]. For our application, we consider a direct
encoding of instruction opcode bits as decision nodes and
lattice elements as terminal nodes. Operations over these
terminal nodes are implemented in polynomial time, ef-
fectively considering their point-wise application. For in-
stance, x ⊏op y is obtained via the application of ⊏ to
terminal nodes of x and y, given the decision nodes lead-
ing to these terminal nodes are mutually feasible. This
corresponds to Equation 6. Similar approaches are applied
for other lattice operations.

This generalisation can also be applied to obtain the transfer function tfop.
In some applications, however, the resulting MTBDDs are overly precise, leading
to costly representations that do not benefit the overall analysis. Consequently,
some alternative, less precise transfer function tf′op is implemented, such that:

∀x, x′ · x ⊑op x′ =⇒ tfop(s)(x) ⊑op tf′op(s)(x
′)

For simplicity, a static order is applied to MTBDD decision nodes. In general,
the highest bits of an opcode appear to have significant influence over the in-
struction behaviour, with the least significant bits corresponding to arguments.
We order bits accordingly, with the highest bits placed earlier. This encoding is
illustrated in Figure 6, corresponding to a constant propagation abstraction for
temp in Figure 5, with ⊤ representing to an unknown value.

An additional concern with matching the online partial evaluator is its inter-
procedural behaviour. The existing implementation of the online approach inlines
all functions up to some set of primitive functions. Naturally, this leads to precise
reasoning across interprocedural boundaries. We match this behaviour in the of-
fline approach, inlining all function calls into an instruction family definition.
This benefits all analyses, including binding-time analysis, without prohibitively
increasing program size.

We illustrate some of the implemented analyses and the encoding details to
obtain opcode-sensitivity.

⊤

{True} {False}

⊥

Value Analysis We consider a type-sensitive value analy-
sis, to bound the possible values of variables and expressions
throughout an instruction family. Abstractly, this lattice con-
siders the powerset of a type’s possible values as a function of
the opcode, i.e., Opcode → P(T) where T is all possible val-
ues of some type. Concretely, we consider distinct encodings
of this lattice based on the given type.

Lift-offline: Instruction Lifter Generators 17

For boolean values, the powerset lattice is directly considered, hoisted into a
MTBDD-based encoding. Transfer functions over this domain are trivial, corre-
sponding to the standard transfer functions over the powerset lattice applied to
mutually feasible terminal nodes of the MTBDD. This corresponds directly to
Equations 6 and 7.

This approach is extended to represent bitvector values, encoded as an array
of boolean values. Bitwise and trivial operations, such as bitvector addition, are
obtained via the corresponding boolean operations applied to array elements.
Beyond these, over-approximations are considered, reducing to an array of ⊤ in
most cases. Of additional concern is ASL’s support for dynamic bitvector widths,
requiring the representation of bitvectors of multiple widths. We address this
through the analysis of integer values, detailed next, to derive the set of possible
widths. A single array is therefore used, sized to the maximum possible width, to
effectively represent all possible bitvectors. Operations dependent on the width,
e.g., bitvector slicing and appending, extract the required sub-array.

An interval domain is implemented for integer values, i.e., (lo, hi) to represent
all values v such that lo ≤ v < hi, again with a trivial hoisting to obtain
opcode-sensitivity via MTBDDs. Transfer functions are carefully considered to
retain precision for operations frequently applied to instruction opcode bits,
while collapsing intervals in other cases. Notably, this domain is structured to
not represent infinite values, deviating from standard interval analysis. This may
seem infeasible, as such a decision prevents the application of widening. However,
we observe that the analysed semantics corresponds to the behaviours of a single
hardware instruction. Consequently, its state and operations are trivially finite.

We leverage this observation and the precision of the value analysis to bound
and unroll iterative behaviours, via repeated applications of the transfer func-
tion, avoiding the need for widening. This may not seem robust, given iterative
behaviours based on values outside the capabilities of the analysis, i.e., values
represented as ⊤, will result impractical analysis outcomes. In evaluating this
approach for the ARMv8 semantics, however, we find all iterative behaviours
of interest are appropriately bound. Admittedly, this may not hold for other
architecture specifications. Such situations would, evidently, demand manual
simplification of the specifications or a more aggressive analysis. We defer such
complexities to these hypothetical specifications.

The resulting abstract state for the value analysis corresponds to st : V ar →
Opcode → P(T). Additionally, we encode a notion of reachability, reach :
Opcode → Bool, to identify statements that will not be evaluated for a given
opcode. Abstractly, this corresponds to the empty set of states at a particular
statement. We encode this notion as a binary decision diagram (BDD) directly,
i.e., a MTBDD with only true and false terminal nodes, such that false repre-
sents unreachable. Control flow statements, such as conditions on if and assert,
determine the abstract value of their branching expressions and update reach
accordingly. We illustrate the transfer function tfval for assignments and asserts,

18 Nicholas Coughlin, A. Michael, and Kait Lam

assuming a transfer function for expression tfe:

tfval(x = e)(reach, st) = (reach, st[x := tfe(e)(v)])
tfval(assert b)(reach, st) = let b′ : Opcode → P(Bool) = tfe(b)(st) in

let r : Opcode → Bool = (λv · True ∈ v) ◦ b′ in
(reach ∧ r, st)

where boolean operations over a BDD correspond to boolean operations over
its terminal nodes, and f ◦ g is function composition, i.e., (f ◦ g)(x) = f(g(x)),
implemented here as the application of function f to all terminal nodes of the
MTBDD g.

To benefit from reach, we implicitly consider all values ⊥ for an opcode
where reach is false, i.e., st(v)(op) = ⊥ for all variables v when ¬reach(op).
This encoding avoids the duplication of reach’s conditions throughout all of the
state’s values. Consequently, we define join over the state abstraction (Opcode →
Bool)× (V ar → Opcode → P(T)) as follows:

(reachx, stx) ⊔ (reachy, sty) =

(reachx ∨ reachy, λv · (reachx ? stx(v) : ⊥) ⊔ (reachy ? sty(v) : ⊥))

where c ? x : y = λop · if c(op) then x(op) else y(op).

Optimisation Analyses The online approach implements a series of standard
program optimisations after its specialisation process, such as copy propagation
and dead-code elimination. To match these simplifications, their analyses are
also made opcode-sensitive via MTBDD-based hoisting. Moreover, their transfer
functions are structured to leverage information derived in the value analysis.

For instance, dead-code elimination is dependent on liveness analysis to iden-
tify dead variables. We encode the liveness analysis domain as V ar → Opcode →
Bool, corresponding to a BDD, encoding Opcode → Bool, for each variable such
that a true value denotes the variable is live. To obtain a path-sensitive result,
the transfer function considers the reach value for each program statement, al-
tering the abstract state only for the conditions under which the statement will
evaluate:

tflive(x = e)(st) = λv · if v ∈ vars(e) then st(v) ∨ reach

else if v = x then st(v) ∧ ¬reach
else st(v)

where reach is the reachability of this statement given the value analysis.
A similar strategy is implemented for copy propagation, tracking redundant

variables and their replacements conditionally on the opcode.

5.4 Opcode-Sensitive Transforms

Given these opcode-sensitive analysis results, we apply a series of transforms to
the lifter with the intention of simplifying its produced semantics, potentially

Lift-offline: Instruction Lifter Generators 19

at the cost of additional lift-time complexity. To handle opcode-sensitivity in
the general case, consider a program transform tr : Stmt → A → Stmt. This
function is invoked over all program statements, each being transformed in-place
given some abstract domain, A, representing analysis results for the statement. If
this analysis result is made opcode-sensitive, i.e., Opcode → A, the corresponding
opcode-sensitive transform, trop, would be the following:

trop(s)(x) = if x(enc) == l1 then tr(s)(l1) (8)
else if x(enc) == l2 then tr(s)(l2)
...

else if x(enc) == ln then tr(s)(ln)

where l1, l2, ..., ln correspond to the range of x. Note that the if statements
represent the transformed statement, i.e, the outcome of applying trop, and are
not evaluated.

This encodes the specialisation of statement s for different classes of instruc-
tion opcode, based on the complexity of the abstract domain. In practice, further
reductions are necessary, e.g., collapsing equivalent branches outcomes, or suc-
cinct and semantically equivalent statements may be directly generated. While
this technique may be applied generally, such a specialising transform is only
beneficial when s is costly, i.e., the potential of a simplified variant of s out-
weighs the overhead of the additional branching. Evidently this is the case when
s is a run-time statement, as the additional reasoning at lift-time is a minor cost
relative to producing simplified run-time semantics.

We detail three applications of this technique, implemented for the offline
partial evaluation pipeline.

Dead-Code Elimination Variables may be conditionally dead based on the
instruction opcode, i.e., their use after definition may be conditional on bits of
the instruction opcode. In such cases, if these variables hold run-time values, the
lifter will emit their definitions even if they aren’t subsequently needed. Given
the opcode-sensitive liveness analysis and the results of binding-time analysis,
such situations can be trivially identified. We apply the generalisation detailed
in Equation 8 to capture these situations.

temp = X[0];
if enc[0] == 0 then

X[1] = temp;
else

X[1] = 0;

(a) Pre-transform

temp = X[0];
X[1] = 0;

(b) Residual of (a),
when enc[0] != 0

if enc[0] == 0 then
temp = X[0];

if enc[0] == 0 then
X[1] = temp;

else
X[1] = 0;

(c) After transform

X[1] = 0;

(d) Residual of (c),
when enc[0] != 0

Fig. 7: Opcode-sensitive dead-code elimination.

20 Nicholas Coughlin, A. Michael, and Kait Lam

We illustrate this approach in Figure 7, where X[0] is a run-time value as-
signed to the conditionally dead variable temp. Given its use is conditional on
enc, the liveness analysis will construct a BDD capturing such conditions. This
BDD is transformed back into the corresponding guard of the branching pattern
in Equation 8, wrapping the conditionally-live variable.

Copy Propagation A similar strategy is applied to obtain opcode-sensitive
copy propagation, tracking the possibility of conditional clobbers. For instance,
consider temp = X[0]; X[UInt(enc [5:0])] = 0; ... temp ... , corresponding to a
load of X[0] followed a write to some element of X[] based on opcode bits. If
it were possible to show the written and read elements of X[] were distinct,
i.e. 0 != UInt(enc [5:0]) , the subsequent uses of temp could be replaced with
X[0]. An opcode-sensitive copy propagation analysis attains exactly this result,
encoding this conditional clobbering of X[0] as a BDD. Similar to the dead-code
illustration, this BDD is converted back into an equivalent guard over enc and
transforms are conditionally applied to references to temp.

Constant Propagation Given the value analysis, it is possible to identify
run-time expressions that evaluate to some constant c for all instruction op-
codes cond, formally, ∀op · cond(op) =⇒ tfe(e)(st)(op) ⊑ {c} where st is the
value analysis at expression e. Therefore, a simpler representation of run-time
behaviours can be obtained by replacing e with if cond(enc) then c else e,
producing only the constant for suitable opcodes.

5.5 Lifter Validation

Given these stages, aslgen successfully derives an instruction lifter, represented
as a reduced ASL program. We exploit this static result to establish bounds on
its behaviour.

For instance, it is possible to establish reachability conditions for all failing
statements, such as assert, to reason over which instruction opcodes may lead
to failure. These assertions are specified in the ASL encoding, validating shallow
conditions for correctness. For instance, assertions are introduced to perform
bounds checking operations over array accesses and validate particular flag com-
binations for instructions. The abstract domain necessary for such reasoning
is already present given the value analysis and its reachability outcomes. For-
mally, we over-approximate the failing conditions for a statement s as a BDD
via fail(s)(st) : Opcode → Bool, where st is the result of the value analysis at
statement s. For instance, fail(assert b)(st) = (λv · False ∈ v) ◦ tfe(b)(st), such
that an assert over an expression that could be False is considered a failure.
Given this outcome, we construct the BDD for reach ∧ fail(s)(st), where reach
is the reachability of s.

If the resulting BDD reduces to false, then the failure conditions are not
possible. Otherwise, the resulting BDD identifies instruction opcodes that may
reach failure. By taking the disjunction of such BDDs across all statements, we

Lift-offline: Instruction Lifter Generators 21

determine the possible failure conditions across an entire instruction family. In
practice, we track multiple BDDs, encoding distinct failure modes.

A further property of interest is the complexity of the semantics produced by
the lifter. We first consider this complexity in terms of the language constructs
necessary to represent instruction semantics. This can be trivially checked, sim-
ply via the collection of all run-time language structures in the produced lifter,
as each will appear in the produced semantics. This addresses the issues dis-
cussed in Section 4.2, as all the required IR constructs are immediately known.
Moreover, if some of these constructs are problematic, their reachability can
be approximated via the prior discussed technique, identifying any instruction
opcodes that would become unsupported without such a construct.

Additionally, we implement simple analyses to establish high-water marks on
the complexity of the produced IR, given some model of the cost of its constructs.
Intuitively, this analysis walks the produced lifter and maintains counts on the
various run-time constructs that may be required. To obtain greater precision
and capture the influence of opcode-sensitive transforms, these counts are also
made opcode-sensitive.

The outcomes of these validation analyses for the ARMv8 specification are
discussed in Section 7.

6 Backends

Following the offline transform and optimisation of the resulting lifter, the lifter-
generator backend genL

IR : {Lifter rASL}rASL → {Lifter IR}L defines the transpila-
tion of the lifter to a new host language L, which can be compiled and executed.
An implementation of the IBI in the host language for the target IR is provided
so that the resulting lifter generates the target IR.

Concretely, implementing a backend means implementing the transpiler from
the reduced ASL statements and expressions describing the generated lifter (e.g.
Figure 4b) to the host language, then implementing the IBI functions to con-
struct the target IR.

To enable the transpilation of the generated lifter to a wide range of host lan-
guages, the offline transform assumes minimal features from the host language. It
only makes use of boolean, integer and bitvector types, mutable and immutable
variables, assignments, function calls, conditional branches and fixed-length for
loops. These features must all be given an equivalent representation in the host
language.

The choice of host language is primarily driven by software engineering re-
quirements, such as integration with existing tools and intermediate representa-
tions. For example, to emit ASL we reuse the data structure defined by ASLi’s
OCaml implementation, motivating the choice of OCaml as the host language.
By generating a lifter in the implementation-language of the target IR we obtain
the closest possible integration, and avoid the performance costs of serialisation
and the associated I/O and parsing, or crossing language boundaries through a
foreign function interface.

22 Nicholas Coughlin, A. Michael, and Kait Lam

Implementation freedom afforded by the IBI allows the concrete type of
both lift-time and run-time language constructs to be selected at gen-time, the
compile-time of the generated lifter, or even at lift-time. Furthermore, this means
the generated lifter may be parametric in lift-time effects—a lifter in one host
language may be able emit multiple IRs, or perform additional analysis and
transformation when executed.

We now discuss three generated lifters, hosted in OCaml, C++, and Scala,
and targeting rASL, LLVM IR, and BASIL IR respectively.

6.1 rASL Offline Lifter Hosted by OCaml

The genOCaml
rASL backend is the most straightforward of all implemented lifters, as

the necessary functionality to evaluate and construct ASL IR is already present
within ASLi, the ASL interpreter underlying ASLp. Therefore, the translation
{Lifter rASL}rASL → {Lifter IR}L is achieved by a simple walk over the lifter’s
structure, implementing lift-time behaviour with equivalent OCaml operations
and calling ASLi functions to construct the reduced ASL representation. The
residual programs produced by this lifter correspond closely with the existing
online implementation, producing similar semantic representations of instruc-
tions. We leverage this for a series of comparisons in Section 7.

A fragment of the OCaml-ASL lifter produced by the genOCaml
rASL backend is

shown in Figure 8. This is obtained by transforming the instruction family of
Figure 4b through the offline generation process. Figure 9a shows the rASL result
produced from this lifter with the mov x1, x2 opcode.

1 if (f_eq_bits (f_and_bits (v_enc) (bits "0110...0")) (bits "0110...0"))
2 || (f_eq_bits (f_and_bits (v_enc) (bits "0110...0")) (bits "0000...0")) then begin
3 v_result__1 := f_gen_and_bits (!v_X_read52__2) (!v_result__2)
4 end else begin
5 (∗ ... omitted cases corresponding to other op values ... ∗)
6 end;
7 if f_eq_bits (f_and_bits (v_enc) (bits "0110...0")) (bits "0110...0") then begin
8 (∗ ... omitted case corresponding to setflags == true ∗)
9 end else begin
10 if not (f_eq_bits (f_and_bits (v_enc) (bits "000...00011111"))
11 (bits "000...00011111")) then begin
12 f_gen_array_store (v__R)
13 (f_cvt_bits_uint (extract_bits (v_enc) 0 5))
14 (f_gen_ZeroExtend (!v_result__1) (f_gen_int_lit (Z "64")))
15 end
16 end

Fig. 8: Fragment of the generated OCaml lifter for the mov instruction family.
Conditions have been transformed into tests of the instruction opcode v_enc.

Lift-offline: Instruction Lifter Generators 23

_R[1] = or_bits (’0’, lsl_bits (_R [2],’0’))

(a) rASL from the OCaml lifter.

%0 = load i64, ptr @R2, align 4
%1 = shl i64 %0, i7 0
%2 = select i1 true , i64 %1, i64 0
%3 = or i64 0, %2
store i64 %3, ptr @R1, align 4

(b) LLVM IR from the C++ lifter.

R1 := bvor64(0bv64, bvshl64(R2, ZeroExtend(57, 0bv7)))

(c) BASIL IR from the Scala lifter.

Fig. 9: Lifter results when executed with mov x1, x2.

6.2 LLVM Offline Lifter Hosted by C++

A C++ backend enables direct integration with C++ frameworks like LLVM
and Alive2 [30]. We describe the implementation of such a backend, genC++

LLVM,
demonstrating that the generated lifter is not constrained to languages imple-
menting a specific (functional) programming idiom.

This backend implementation is designed to be parametric. The lift-time and
run-time types are specified through template parameters and may be varied at
C++ compile-time without re-generating the lifter. Furthermore, this is imple-
mented in a type-safe way, so we can utilise C++’s type checking to guide the
implementation of the IBI. However, the restriction of the types at compile-time
might be undesirable if, for example, a generic shared library for arbitrary tar-
get IRs is needed. In these cases, specifying the run-time and lift-time types as
std :: any will enable this flexibility but lessen the strength of compile-time type
checking.

A shared library is is also beneficial to avoid the impact of the C++ lifter’s
long compile time, discussed later in Section 7.4. We additionally improve com-
pile times by enabling parallel compilation, pre-compiling template header files,
and reducing the necessity of frequent recompilation. This includes separating
type definitions from the generated lifter, and separating template implementa-
tions from declarations.

The C++ lifter was instantiated with an IBI emitting LLVM IR. The LLVM
produced by this lifter can be seen in Figure 9b.

6.3 BASIL IR Offline Lifter Hosted by Scala

BASIL is a program verification tool for AArch64 binaries implemented in Scala [44].
Although it lacks an external-facing interface to construct its IR, the offline lifter
allows us to inject a lifter into its code base and generate BASIL IR through its
internal methods.

24 Nicholas Coughlin, A. Michael, and Kait Lam

BASIL uses a disassembler, ddisasm [14], to reconstruct a binary’s control
flow, producing a control flow graph (CFG) with blocks consisting of instruction
opcodes. The previous online lifter required a separate OCaml program to invoke
ASLp and serialise the resulting semantics of each instruction opcode, which
BASIL subsequently deserialised and translated into its IR.

The generated offline lifter no longer needs to cross this language boundary.
It loads the CFG and basic blocks from ddisasm and calls its lifting operation
on each opcode. This removes BASIL’s run-time dependency on ASLp and the
ASL specification, avoiding the burden of maintaining the parser and translator.

The primary challenge faced when implementing this backend was the JVM’s
64 KB method bytecode size limit. Since aslgen outputs one (potentially very
large) function for each instruction family, the generated lifter fails to compile
if translated directly. To address this, the backend replaces some branch bodies
and sub-expressions with function calls which evaluate their contents, i.e. they
are outlined. Outlining is performed before translation to Scala by a forwards
analysis over the rASL representation. It is applied recursively, depth-first, to
any statement list larger than the size threshold, making it possible to produce
a deep call stack.

The residual program generated by the lifter represents control flow between
instructions in the form of assignments to the program counter (PC), with condi-
tional control flow performing this assignment within an if statement. However,
in BASIL IL, such control flow is instead modelled as calls and goto commands,
corresponding to edges in the CFG. To match PC assignments to control-flow
graph edges, we instrument the IBI for BASIL IR to track assignments to the
program counter, along with any if statements guarding the assignment. For
each control-flow edge identified by ddisasm, we identify PC assignments in the
edge’s source block, verify they occur at the end of the block, and replace the
PC assignment with an appropriate goto (or call when the target block is a pro-
cedure entry). In the case of conditional jumps, the join point implied by the
guarding if statement is removed, and the jumps to the join are replaced with
jumps to the respective target blocks of each outgoing CFG edge.

7 Evaluation

To evaluate aslgen, we consider its application to an existing ASL encoding of
the ARMv8 architecture. The implementation and results are available at [10]:
https://zenodo.org/records/13219113. We first detail the outcomes of the vali-
dation analyses, as described in Section 5.5. Next, we leverage the OCaml back-
end to implement differential testing, similar to prior work [25], validating the
correctness of the produced semantics with respect the ASL interpreter, ASLi.
Moreover, we use the OCaml backend to compare the semantics produced by
offline partial evaluation with the online approach, at a syntactic level. Follow-
ing this, we detail the generation and compile times for aslgen and each of the
implemented backends. Finally, we discuss the relative effects of the online and
offline approaches on verification performance with a real binary analysis tool.

https://zenodo.org/records/13219113

Lift-offline: Instruction Lifter Generators 25

Exprs Branches Declarations
Class mean max mean max mean max
Branch 9.43 15 0.43 1 0.14 1
Float 14.40 38 0.13 1 0.13 1
Integer 60.88 1,713 2.14 64 0.22 4
Memory 60.57 747 0.09 1 0.51 2
Vector 185.12 1,929 7.50 160 5.30 65

Table 1: Maximum & mean counts of expressions, branches, and declarations
emitted for a given instruction.

7.1 Static Validation

We validate the offline lifter generated from the ASL specification of ARMv8,
i.e., the output of aslgen(ARMv8), through a series of static analyses.

First, we consider the reachability of failing statements throughout the spec-
ification. Through aggressive precision in the value analysis, we successfully es-
tablish lifting support for all instruction opcodes, except for those that go beyond
the enforced assumptions of the lifter model5.

Second, we identify all IR primitives required to express the instruction se-
mantics, given the IBI calls required during the offline transform. The user-mode
behaviours of the ARMv8 model can be expressed in terms of standard bitvector
primitive operations, along with a series of primitives for floating point opera-
tions. Additionally, required control flow is limited to if branching statements,
as all other control flow, i.e., calls and iteration, are successfully reduced.

Third, we establish bounds on the complexity of produced semantics, by
tallying the maximum number of IBI calls that may be invoked for a given
instruction family. The results of this analysis are detailed in Table 1, grouped
by classes of instruction families and the generated program constructs.

Evidently, vector instructions are more expensive. Vector instructions com-
monly contain loops, and even nested loops, which the generated lifter fully
unrolls to simplify reasoning in subsequent binary analyses, at the cost of larger
representations. The floating point instructions do not suffer from this because
they abstract the complex floating point operations into primitive function calls,
corresponding to IEEE 754 operations where possible. Given a standardized
notion of vector primitive operations, i.e., addition over a n-element vector of
bitvectors, similar benefits could be observed for the vector instructions.

7.2 Differential Testing

We evaluate the correctness of the lifter produced by genOCaml
rASL with respect

to the composition of Equations 4 and 5, i.e, are the produced semantics for a
given instruction equivalent to those described in the specification. Building on
infrastructure from prior work [25], we generate a series of instruction opcodes by
5 For instance, to produce simple semantics, the lifter enforces the global constraint

that it is operating in user-mode. Therefore, any instructions that require alternative
modes to evaluate will fail.

26 Nicholas Coughlin, A. Michael, and Kait Lam

enumerating arguments to instruction families. Given randomised initial states,
we then evaluate both the lifted semantics and the original specification for each
instruction opcode using the ASLi interpreter, followed by a comparison of the
final states. This corresponds to evaluating the following:

∀op ∈ enum · ∀st ∈ random · ⟨⟨Lifter rASL⟩(op)⟩(st) = ⟨ARMv8⟩(op, st) (9)

where enum corresponds to a finite enumeration of instruction opcodes and
random corresponds to finite enumeration of random states.

We find no issues with the generated lifter after evaluating its behaviours
across a sample of 152, 703 instruction opcodes. The selected opcodes cover be-
haviours across all instruction families, varing their flags and arguments to ob-
tain greater coverage of their behaviours. While this does not formally establish
correctness of the produced lifter, it provides a greater confidence in its results.

7.3 Comparison with Online Approach

We compare the lifter produced by genOCaml
rASL with the online lifter (as introduced

in Section 4) since the two are interchangeable: both are OCaml programs that
consume an instruction opcode and produce its semantics in reduced ASL rep-
resentations. We first evaluate their performance and then consider a manual
comparison of the syntactic differences in their results, with respect to the in-
struction enumeration used in Section 7.2.

Performance For performance, we compare the execution times required to
extract the semantics for each instruction opcode. Table 2 shows that the offline
lifter is multiple orders-of-magnitude faster at lift-time. This is expected since
the lifter is now compiled rather than interpreted, and we have performed the
computationally-expensive partial evaluation ahead-of-time.

Output Comparison We compare the reduced ASL outputs generated from
the online and offline lifters across the 152,703 enumerated instructions. We find
32% of this set produce textually identical ASL code after normalising variable
names. The remaining differences are explained by over-approximations in the
offline partial evaluation process.

Avg. time (ms)
Class Opcode count Online Offline
Branch 189 1.342 0.011
Float 3,846 1.400 0.023
Integer 12,667 1.360 0.023
Memory 29,397 3.762 0.039
Vector 106,863 2.745 0.052

Table 2: Average lift-time execution time per instruction, for each instruction
family class in the offline and online lifters implemented in OCaml.

Lift-offline: Instruction Lifter Generators 27

Exprs Branches Decls
Online Offline Online Offline Online Offline

mean max mean max mean max mean max mean max mean max
Branch 15.40 19 18.20 27 0.60 1 0.60 1 0.00 0 0.20 1
Float 31.53 53 33.13 80 0.13 1 0.13 1 1.27 2 0.13 1
Integer 245.10 5,183 273.69 5,558 3.41 64 3.41 64 0.15 3 0.23 4
Memory 146.64 1,855 147.06 1,855 0.09 1 0.09 1 0.27 2 0.55 2
Vector 345.43 4,447 391.78 3,879 7.56 192 7.29 160 5.83 64 4.95 65

Table 3: Online and offline instruction complexity by instruction class.

Table 3 gives summaries of the IR constructs produced for this set of enu-
merated instructions, grouped by instruction family classes, for the online and
offline lifters. While the offline lifter often introduces extra temporary variables
and sub-expressions, we find that it produces equivalent or simpler control flow.
Given this and the minor differences in expression complexity, we hypothesize
that it is unlikely the offline results will have a detrimental effect on any subse-
quent analysis. We now consider some specific examples where the offline lifter
produces more complex residual programs.

The main source of increased expression complexity can be attributed to alge-
braic reductions obvious to the online lifter, but hidden by over-approximations
in the offline approach. Consider, for example, the instruction b #0 which is a
branch to offset 0 from the current program counter. Abstractly, this instruction
corresponds to an operation PC = PC + offset, where offset is the offset encoded
in the instruction opcode, i.e., 0 here. As offset is encoded within the instruction
opcode, the online lifter can immediately exploit its concrete value, whereas the
offline approach must consider all possible values of offset . Consequently, the
online approach can trivially reduce PC = PC + 0 to only PC = PC via standard
pattern matching on its constructed expressions, whereas the offline will produce
the non-reduced form. This is shown in the diff below, comparing the online resid-
ual program ((-) lines) against the offline residual program ((+) lines). The two
outputs align for all other literal arguments to this branch instruction, as there
are no other reduction the online approach can exploit.
(-) PC = PC;
(+) PC = add_bits(PC, ’0...00000000000000000000000’);

Fixing the offline output is clearly possible, but it would mean identifying
the zero argument as a special case when generating the addition of run-time
and lift-time values, specialising when the lift-time value is zero.

Similar issues are observed in other algebraic reductions, particularly for
nested bitvector slicing and shifting operations. For instance, consider the case
of test bit and branch instructions. In these instructions, a bit is extracted from
a register and compared with zero, jumping to a given address if this is the case.
(-) if eq_bits(_R[0][32 +: 1], ’0’) then {
(+) if eq_bits(lsr_bits (_R[0], ’0100000’)[0 +: 1][0 +: 1], ’0’) then {
(-) PC = PC;
(+) PC = add_bits(PC, ’0...00000000000000000000000’);
(=) }

28 Nicholas Coughlin, A. Michael, and Kait Lam

For such an instruction, the online lifter simplifies the bit extraction to a
single slice expression ([32 +: 1]), while the offline lifter’s result encodes this ex-
traction as three operations. Specifically a logical shift right by 32 bits (lsr_bits),
and a slice extracting of the lowest bit ([0 +: 1]) which is redundantly repeated.
We also observe a redundant addition of zero, as discussed prior.

For these instructions, the bit index (32) and register (_R[0]) are both de-
coded from the instruction opcode. As a result, these values are concrete literals
during online partial evaluation, permitting trivial reductions over shifting and
slicing operations. Evidently, these values will not be known to the offline lifter,
requiring it to generalise the reductions implemented by the online to arbitrary,
non-literal expressions. Such a generalisation should be possible, however the of-
fline approach relies on the existing set of reductions that have been fine-tuned
for online partial evaluation. These fine-tuned approaches are geared specifically
towards cases with literal arguments, as such information is readily available to
the online approach. Therefore, these issues are addressable, given additional
effort to migrate online reductions to the offline.

These examples demonstrate the pathological cases that constitute the ma-
jority of differences in the complexity of expressions generated by the online and
the offline lifter. Addressing such differences would likely require more sophisti-
cated static analysis in the offline transform. Alternatively, standard reductions
over the offline lifter’s output are sufficient to clean up the resulting semantics,
However, this has the limitation that it must be implemented for every backend.

7.4 Compile Times of Generated Lifters

While the offline approach provides considerable benefits, particularly for inte-
gration purposes, replicating the output of the online approach demands aggres-
sive analysis and specialisation, as discussed in Section 5. These costs are appar-
ent in the time taken to generate and compile a lifter. For instance, the current
implementation of aslgen and the subsequent backend transforms take approx-
imately 10 seconds to produce a lifter for the ARMv8 specification. Moreover,
the subsequent compilation of this program into an executable takes significant
time, varying based on language implementation. We list these in Table 4, along
with the compile time of the online lifter for reference.

Evidently, these compile times are significant, in addition to the 10 seconds
required to produce a lifter. Nevertheless, these stages are only required once
per hardware architecture specification. As these specifications do not frequently
change, such overheads are not significant.

Lifter Compile time (s)
Online OCaml 4.14 2.60
Offline OCaml 4.14 63.22
Offline Scala 3.3.1 95.11
Offline C++ 73.35

Table 4: Compile-time for lifter code using 16 threads.

Lift-offline: Instruction Lifter Generators 29

verification time (s) resource count
mean max std dev mean max std dev

offline 0.05 8.12 0.17 29,078.94 5,380,601 191,142.23
online 0.04 1.44 0.09 21,989.63 4,867,142 181,745.24

Table 5: Average solving time by SMT solver using online vs offline lifter.

7.5 Verification Performance

The BASIL analysis tool implements the information flow security logic of Win-
ter et. al [47], through the annotation and translation of its IR into the Boogie
verification language [26]. Boogie, subsequently, verifies the IR using weakest-
precondition reasoning with an SMT solver.

The tool has been integrated with the existing online approach, via a custom
translator from reduced ASL to BASIL, as well as the offline approach, via the
genScala

BASIL backend. We evaluate all of BASIL’s provided test programs for both
lifters, to identify possible differences in analysis outcomes due to IR complex-
ity. We find that all test program produce equivalent outcomes for the given
lifters. Table 5 summarizes these findings, representing outcomes for the SMT
queries ultimately produced by the tool, in terms of their termination times and
resource count, averaged across 10 runs. Resource count is a figure produced
by the solver to give some relative measure of its resource usage. Evidently, the
offline approach incurs slightly higher resource usage relative to the online. We
attribute this to the slight increase in residual program complexity. Note that
Table 5 measures the solving time for the produced SMT queries, excluding the
processing time to lift the binary and construct these queries.

8 Related Work

Given the wide variety of hardware architectures and their complexity, existing
work has explored the development of reusable instruction lifters [34,43]. Such
encodings are generally manually derived, potentially along with testing to val-
idate their behaviours. Despite this, mistakes in their encodings continue to be
found [25]. Additionally, the semantics of their encodings are rarely formalised,
presenting soundness concerns for any subsequent analysis [35].

This paper is closely related to our prior work, in which online partial eval-
uation is applied to ASL [25]. An alternative approach is proposed by Sammler
et al., applying symbolic execution [23] to a formal hardware specification as a
means to extract a symbolic trace of an instruction’s effects [41]. This work lever-
ages an SMT solver to reason over the symbolic trace, discharging branch con-
ditions and simplifying expressions. The resulting trace is similar to the concept
of residual programs found in partial evaluation, representing an instruction’s
influence on the hardware state. Moreover, by leveraging additional automation,
the correctness of the produced trace is formally verified with respect to the
original semantics through a translation validation technique [37]. Relative to
our work, these approaches provide strong arguments for soundness, however,
are non-trivial to integrate into subsequent analysis.

30 Nicholas Coughlin, A. Michael, and Kait Lam

Given formal architecture specifications are often defined as inputs to in-
teractive theorem provers [15], existing work has explored the derivation of in-
struction semantics within such tools. These approaches generally leverage the
prover’s rewrite engine to soundly reduce representations [33,45,29]. Evidently,
this approach provides strong formal guarantees of correctness and provides sig-
nificant benefits when reasoning within the prover. However, similar to other
automatic techniques, the extraction and integration of these reduced semantics
for analysis in other settings is non-trivial.

Existing work has explored the application of binary decision diagrams to
abstract interpretation. These approaches consider more general applications
than the trivial notion of opcode-sensitivity discussed here. For instance, decision
nodes may operate over arbitrary linear constraints [12]. Moreover, decisions over
the bits of a bitvector, similar to our approach, have been used to encode integer
sets [31] and points-to relations [28].

Differences between offline and online partial evaluation have been exten-
sively discussed in existing studies [42]. While it is generally viewed that online
partial evaluation will obtain more accurate results, given concrete static val-
ues, Christensen et al. [9] demonstrate equivalent results can be obtained with a
maximally polyvariant offline partial evaluator. In essence, this approach avoids
over-approximation during binding-time analysis at control flow joins by split-
ting the join and specialising for each outcome. While such a technique could
be applied in our setting to match specialising effects, our primary challenge in
matching the two approaches is due to subsequent simplifying transforms.

9 Conclusion

We have demonstrated the application of offline partial evaluation to a formal
architecture specification, as a means to statically derive a generic instruction
lifter and the specialisation of that lifter to a series of IRs. Moreover, we have
illustrated the benefits of analysing the produced lifter, validating the breadth of
supported instructions and the complexity of their representations. We believe
this work paves the way to widespread use of automatically derived instruction
lifters for analysis, reducing integration overhead to relatively simple lifter trans-
forms. Additionally, this work enables the use of such lifters for contexts where
per-instruction extraction would be impractical, such as emulation [6].

Evidently, online partial evaluation can derive simpler semantic represen-
tations for complex instructions. In future work, we aim to integrate further
simplifications into the aslgen process, bridging this gap. However, we hypothe-
size that this difference in representation does not significantly limit uses of the
lifter, as the bulk of these correspond to relatively minor syntactic differences.

The differential testing approach provides confidence in the correctness of
the produced lifter, that goes beyond the assurances made by off-the-shelf lifters
currently in use. However, this testing approach falls short of formal verification.
We hope to address this in future work, formally establishing Equation 4 for a
produced lifter through a process akin to translation validation.

Lift-offline: Instruction Lifter Generators 31

References

1. ARM: ARM Architecture Reference Manual for A-profile architecture (2023)
2. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,

Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-a, RISC-V, and CHERI-MIPS. Proc.
ACM Program. Lang. 3(POPL) (jan 2019), https://doi.org/10.1145/3290384

3. Avast Software: avast/retdec: RetDec is a retargetable machine-code decompiler
based on LLVM. https://github.com/avast/retdec (2022)

4. Balakrishnan, G., Reps, T.W.: WYSINWYX: What You See Is Not What You
eXecute. ACM Trans. Program. Lang. Syst. 32(6), 23:1–23:84 (2010), https://
doi.org/10.1145/1749608.1749612

5. Barthe, G., Blazy, S., Hutin, R., Pichardie, D.: Secure compilation of constant-
resource programs. In: 34th IEEE Computer Security Foundations Symposium,
CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. pp. 1–12. IEEE (2021), https:
//doi.org/10.1109/CSF51468.2021.00020

6. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of
the FREENIX Track: 2005 USENIX Annual Technical Conference, April 10-15,
2005, Anaheim, CA, USA. pp. 41–46. USENIX (2005), http://www.usenix.org/
events/usenix05/tech/freenix/bellard.html

7. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification. pp.
463–469. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986), https://doi.org/10.1109/TC.1986.
1676819

9. Christensen, N.H., Glück, R.: Offline partial evaluation can be as accurate as on-
line partial evaluation. ACM Trans. Program. Lang. Syst. 26(1), 191–220 (2004),
https://doi.org/10.1145/963778.963784

10. Coughlin, N., Michael, A., Lam, K.: Artifact for "Lift-offline: Instruction Lifter
Generators" (Aug 2024), https://doi.org/10.5281/zenodo.13219113

11. Dasgupta, S., Park, D., Kasampalis, T., Adve, V.S., Roşu, G.: A complete formal
semantics of x86-64 user-level instruction set architecture. In: Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. p. 1133–1148. PLDI 2019, Association for Computing Machinery, New
York, NY, USA (2019), https://doi.org/10.1145/3314221.3314601

12. Dimovski, A.S., Apel, S., Legay, A.: Several lifted abstract domains for static anal-
ysis of numerical program families. Sci. Comput. Program. 213, 102725 (2022),
https://doi.org/10.1016/j.scico.2021.102725

13. D’Silva, V., Payer, M., Song, D.X.: The correctness-security gap in compiler op-
timization. In: 2015 IEEE Symposium on Security and Privacy Workshops, SPW
2015, San Jose, CA, USA, May 21-22, 2015. pp. 73–87. IEEE Computer Society
(2015), https://doi.org/10.1109/SPW.2015.33

14. Flores-Montoya, A., Schulte, E.M.: Datalog disassembly. In: Capkun, S., Roesner,
F. (eds.) 29th USENIX Security Symposium, USENIX Security 2020, August 12-
14, 2020. pp. 1075–1092. USENIX Association (2020), https://www.usenix.org/
conference/usenixsecurity20/presentation/flores-montoya

15. Fox, A.C.J.: Formal specification and verification of ARM6. In: Basin, D.A., Wolff,
B. (eds.) Theorem Proving in Higher Order Logics, 16th International Conference,
TPHOLs 2003, Rom, Italy, September 8-12, 2003, Proceedings. Lecture Notes in

https://doi.org/10.1145/3290384
https://github.com/avast/retdec
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1109/CSF51468.2021.00020
https://doi.org/10.1109/CSF51468.2021.00020
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1145/963778.963784
https://doi.org/10.5281/zenodo.13219113
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1016/j.scico.2021.102725
https://doi.org/10.1109/SPW.2015.33
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya

32 Nicholas Coughlin, A. Michael, and Kait Lam

Computer Science, vol. 2758, pp. 25–40. Springer (2003), https://doi.org/10.
1007/10930755_2

16. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods Syst. Des.
10(2/3), 149–169 (1997), https://doi.org/10.1023/A:1008647823331

17. Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis: automatically
learning the x86-64 instruction set. In: Krintz, C., Berger, E.D. (eds.) Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. pp. 237–
250. ACM (2016), https://doi.org/10.1145/2908080.2908121

18. Intel Corporation: Intel A64 and IA-32 Architectures Software Developer’s manual
(2023)

19. Jancar, J., Fourné, M., Braga, D.D.A., Sabt, M., Schwabe, P., Barthe, G., Fouque,
P., Acar, Y.: They’re not that hard to mitigate: What cryptographic library de-
velopers think about timing attacks. In: Rabiser, R., Wimmer, M., Groher, I.,
Wortmann, A., Wiesmayr, B. (eds.) Software Engineering 2024, Fachtagung des
GI-Fachbereichs Softwaretechnik, Linz, Austria, February 26 - March 1, 2024.
LNI, vol. P-343, pp. 143–144. Gesellschaft für Informatik e.V. (2024), https:
//doi.org/10.18420/sw2024_47

20. Jeannet, B.: Bddapron (2012)
21. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program

generation. Prentice Hall international series in computer science, Prentice Hall
(1993)

22. Kim, S., Faerevaag, M., Jung, M., Jung, S., Oh, D., Lee, J., Cha, S.K.: Test-
ing intermediate representations for binary analysis. In: Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. p.
353–364. ASE 2017, IEEE Press (2017)

23. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976), https://doi.org/10.1145/360248.360252

24. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified imple-
mentation of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014. pp. 179–192. ACM (2014),
https://doi.org/10.1145/2535838.2535841

25. Lam, K., Coughlin, N.: Lift-off: Trustworthy ARMv8 semantics from formal spec-
ifications. In: Nadel, A., Rozier, K.Y. (eds.) Formal Methods in Computer-Aided
Design, FMCAD 2023, Ames, IA, USA, October 24-27, 2023. pp. 274–283. IEEE
(2023), https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_36

26. Leino, K.R.M.: This is Boogie 2, https://www.microsoft.com/en-us/research/
publication/this-is-boogie-2-2/

27. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009), https://doi.org/10.1007/s10817-009-9155-4

28. Lhotak, O.: Program Analysis Using Binary Decision Diagrams. Ph.D. thesis,
School of Computer Science, McGill University, Montreal (2006)

29. Lindner, A., Guanciale, R., Metere, R.: TrABin: Trustworthy analyses of binaries.
Sci. Comput. Program. 174, 72–89 (2019), https://doi.org/10.1016/j.scico.
2019.01.001

30. Lopes, N.P., Lee, J., Hur, C., Liu, Z., Regehr, J.: Alive2: bounded translation
validation for LLVM. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd ACM

https://doi.org/10.1007/10930755_2
https://doi.org/10.1007/10930755_2
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.18420/sw2024_47
https://doi.org/10.18420/sw2024_47
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_36
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1016/j.scico.2019.01.001
https://doi.org/10.1016/j.scico.2019.01.001

Lift-offline: Instruction Lifter Generators 33

SIGPLAN International Conference on Programming Language Design and Im-
plementation, Virtual Event, Canada, June 20-25, 2021. pp. 65–79. ACM (2021),
https://doi.org/10.1145/3453483.3454030

31. Mattsen, S.: BDD-based value analysis for X86 executables. Ph.D. thesis, Technical
University of Hamburg, Germany (2017), http://tubdok.tub.tuhh.de/handle/
11420/1510

32. Meng, X., Miller, B.P.: Binary code is not easy. In: Zeller, A., Roychoudhury, A.
(eds.) Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016. pp. 24–35. ACM
(2016), https://doi.org/10.1145/2931037.2931047

33. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - Improved. In:
Cabodi, G., Singh, S. (eds.) Formal Methods in Computer-Aided Design, FMCAD
2012, Cambridge, UK, October 22-25, 2012. pp. 78–81. IEEE (2012), https://
ieeexplore.ieee.org/document/6462558/

34. National Security Agency: Sleigh. https://github.com/
NationalSecurityAgency/ghidra (2022)

35. Naus, N., Verbeek, F., Walker, D., Ravindran, B.: A formal semantics for P-Code.
In: Lal, A., Tonetta, S. (eds.) Verified Software. Theories, Tools and Experiments
- 14th International Conference, VSTTE 2022, Trento, Italy, October 17-18, 2022,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 13800, pp. 111–
128. Springer (2022), https://doi.org/10.1007/978-3-031-25803-9_7

36. Palsberg, J., Schwartzbach, M.I.: Binding-time analysis: Abstract interpretation
versus type inference. In: Bal, H.E. (ed.) Proceedings of the IEEE Computer So-
ciety 1994 International Conference on Computer Languages, May 16-19, 1994,
Toulouse, France. pp. 277–288. IEEE Computer Society (1994), https://doi.org/
10.1109/ICCL.1994.288372

37. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
Tools and Algorithms for Construction and Analysis of Systems, 4th International
Conference, TACAS ’98, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April
4, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1384, pp. 151–166.
Springer (1998), https://doi.org/10.1007/BFb0054170

38. Reid, A.: Trustworthy specifications of ARM® v8-A and v8-M system level archi-
tecture. In: Proceedings of the 16th Conference on Formal Methods in Computer-
Aided Design. p. 161–168. FMCAD ’16, FMCAD Inc, Austin, Texas (2016)

39. Reid, A.: Who guards the guards? Formal validation of the Arm v8-M architecture
specification. Proc. ACM Program. Lang. 1(OOPSLA), 88:1–88:24 (2017), https:
//doi.org/10.1145/3133912

40. Reid, A.: Using ASLi with Arm’s V8.6-A ISA specification (Jan 2020), https:
//alastairreid.github.io/using-asli/

41. Sammler, M., Hammond, A., Lepigre, R., Campbell, B., Pichon-Pharabod, J.,
Dreyer, D., Garg, D., Sewell, P.: Islaris: Verification of machine code against author-
itative ISA semantics. In: Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. p. 825–840.
PLDI 2022, Association for Computing Machinery, New York, NY, USA (2022),
https://doi.org/10.1145/3519939.3523434

42. Sumii, E., Kobayashi, N.: Online-and-offline partial evaluation: A mixed approach
(extended abstract). In: Lawall, J.L. (ed.) Proceedings of the 2000 ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Manipula-
tion (PEPM ’00), Boston, Massachusetts, USA, January 22-23, 2000. pp. 12–21.
ACM (2000), https://doi.org/10.1145/328690.328694

https://doi.org/10.1145/3453483.3454030
http://tubdok.tub.tuhh.de/handle/11420/1510
http://tubdok.tub.tuhh.de/handle/11420/1510
https://doi.org/10.1145/2931037.2931047
https://ieeexplore.ieee.org/document/6462558/
https://ieeexplore.ieee.org/document/6462558/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://doi.org/10.1007/978-3-031-25803-9_7
https://doi.org/10.1109/ICCL.1994.288372
https://doi.org/10.1109/ICCL.1994.288372
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1145/3133912
https://doi.org/10.1145/3133912
https://alastairreid.github.io/using-asli/
https://alastairreid.github.io/using-asli/
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/328690.328694

34 Nicholas Coughlin, A. Michael, and Kait Lam

43. Trail of Bits: lifting-bits/remill: Library for lifting machine code to LLVM bitcode.
https://github.com/lifting-bits/remill (2022)

44. UQ-PAC: UQ-PAC/BASIL. https://github.com/UQ-PAC/BASIL (2024)
45. Verbeek, F., Olivier, P., Ravindran, B.: Sound C code decompilation for a sub-

set of x86-64 binaries. In: de Boer, F.S., Cerone, A. (eds.) Software Engineering
and Formal Methods - 18th International Conference, SEFM 2020, Amsterdam,
The Netherlands, September 14-18, 2020, Proceedings. Lecture Notes in Com-
puter Science, vol. 12310, pp. 247–264. Springer (2020), https://doi.org/10.
1007/978-3-030-58768-0_14

46. Wang, F., Shoshitaishvili, Y.: Angr - the next generation of binary analysis. In:
IEEE Cybersecurity Development, SecDev 2017, Cambridge, MA, USA, September
24-26, 2017. pp. 8–9. IEEE Computer Society (2017), https://doi.org/10.1109/
SecDev.2017.14

47. Winter, K., Coughlin, N., Smith, G.: Backwards-directed information flow analy-
sis for concurrent programs. In: 2021 IEEE 34th Computer Security Foundations
Symposium (CSF). pp. 1–16. IEEE (2021)

https://github.com/lifting-bits/remill
https://github.com/UQ-PAC/BASIL
https://doi.org/10.1007/978-3-030-58768-0_14
https://doi.org/10.1007/978-3-030-58768-0_14
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SecDev.2017.14

	Lift-offline: Instruction Lifter Generators

