
OFFICIAL

OFFICIAL

Lift-offline: Instruction lifter generators
SAS 2024, October 2024

Nicholas Coughlin, Alistair Michael, and Kait Lam
DST Group / The University of Queensland

 - Lift-offline, an application of offline partial evaluation to generate lifters for an instruction-set architecture. 
 - Joint work 



Background

▶ Reasoning about assembly code requires accurate, trustworthy
models of the instruction-set architecture (ISA).

▶ Existing decompilers use hand-written semantics with limited
correctness arguments.

▶ ARM publishes a machine-readable specification of its ISA
(Reid 2016), expressed in ARM Specification Language (ASL).

▶ However, formal models remain difficult to integrate with
analysis tools.

2/20

title

- due to differences in language, IR, ...



Previous Work

▶ Previous work: ASLp, an online partial evaluator for ASL
(Lam & Coughlin 2023)
▶ Simplifies given a known instruction encoding (opcode).
▶ Validated by differential testing against an ASL interpreter.
▶ Found bugs in the instruction semantics of RetDec and Remill.

if enc AND 0x80 then
R3 = R1 + R2

else
R3 = R1 - R2

Simple architecture
specification

R3 = R1 + R2

Residual when
enc = 0x8F

simplify given
enc = 0x8F

3/20

title



Problems Arising

▶ Online partial evaluation requires traversing the specification
for each opcode.

▶ Several disadvantages:
▶ Tight coupling between downstream projects and ASLp +

OCaml runtime + ASL specification.
▶ Difficult to reason universally about the produced semantics.
▶ Difficult to integrate with analysis tools (different languages

and different IRs).

4/20

title



Observations

Aim: generate a standalone lifter in the style of hand-written
lifters (a lifter is a program which returns instruction semantics,
given an opcode).

▶ ASL specification is structurally similar to a lifter.
▶ However, a lifter will distinguish two stages:

▶ Lift-time: execution of the lifter to generate semantics.
▶ Run-time: execution of the semantics to produce side-effects.

▶ ASL specification does not differentiate the two, but we can
deduce them.

5/20

title



Comparison — ASL vs RetDec

Example: add <Xd>, <Xn>, <Xm>.

bits(datasize) result; bits(4) flags;

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

(result, flags) = AddWithCarry(
operand1, operand2, '0');

X[d] = result;

void translateAdd(cs_insn* i,
cs_arm64* ai, llvm::IRBuilder<>& irb)

std::tie(op1, op2) = loadOpBinary(ai);

auto *val = irb.CreateAdd(op1, op2);

storeOp(ai->operands[0], val);

6/20

title



An Offline Approach

Offline partial evaluation to generate a lifter ahead-of-time in two
phases.

1. Binding-time analysis:
▶ Mark static values (e.g. opcode, constants) as lift-time.
▶ Propagate and mark computations as lift-time if all inputs are

lift-time, otherwise run-time.
2. Offline transformation:

▶ For lift-time operations, no change needed.
▶ For run-time operations, instead produce function calls which

construct an AST.

7/20

title



Offline vs Online Partial Evaluation
Abstractly, difference between online and offline is akin to currying:
online : Spec× Opcode→ Sem, offline : Spec→ (Opcode→ Sem)︸ ︷︷ ︸

Lifter

.

if enc AND 0x80 then
R3 = R1 + R2

else
R3 = R1 - R2

Simple specification (specASL)

R3 = R1 + R2

Residual when
enc = 0x8F

online transform
given enc = 0x8F

if enc AND 0x80 then
gen_store("R3", gen_add(gen_load("R1"), gen_load("R2")))

else
gen_store("R3", gen_sub(gen_load("R1"), gen_load("R2")))

Generated lifter

offline
transform

evaluate given
enc = 0x8F

diagram continues
to right...

diagram continues
to right...

Correctness:
∀op • specASL(op) ≃ online(op, specASL) ≃ offline(specASL)(op).8/20

title



Offline vs Online Partial Evaluation (cont.)

R3 = R1 + R2

Residual when
enc = 0x8F

if enc AND 0x80 then
gen_store("R3", gen_add(...))

else
gen_store("R3", gen_sub(...))

Generated lifter

evaluate given
enc = 0x8F

if (enc & 0x80) {
irb.CreateStore(r3, irb.CreateAdd(...));

} else {
irb.CreateStore(r3, irb.CreateSub(...));

}

Generated lifter in C++

translate
to C++

%1 = load i64, ptr @X1
%2 = load i64, ptr @X2
%3 = add i64 %1, %2
store i64 %3, ptr @X3

evaluate given enc = 0x8F
and irb = LLVM

translate
to LLVM

9/20

title



Translating

▶ Generated lifter represents two stages of execution within the
same ASL program.

Lift-time Run-time (deferred)
Literal 0 gen_int("0")
Addition x + y gen_add(x, y)
Variable bits(64) x; x = decl_bv("x", 64);
Branch if c then t else f (t,f,j) = gen_branch(c)

▶ Translating to different lift-time languages is only a syntactic
transformation.

▶ One lifter can target different run-time languages (e.g. by
polymorphism or duck typing).

10/20

title



Refining Offline Partial Evaluation
▶ Online partial evaluation is extremely powerful, due to precise

knowledge of the opcode.
▶ Post-processing can clean up many sub-optimal structures.

▶ Offline residuals are less amenable to post-processing.
▶ Noticeable over-approximation.
▶ Simplifications based on algebraic rules are less effective.

if enc[20] == enc[10] then
temp = X[0];

else
temp = 0;

X[2] = temp + X[1];

Zero-register example

temp = gen_var("temp")
if enc[20] == enc[10] then

gen_store(temp, gen_load("R0"));
else

gen_store(temp, gen_literal(0));
gen_store("R2", gen_add(
↪→ gen_load(temp), gen_load("R1")));

offline
transform

if enc[20] == enc[10] then
temp = X[0];

else
temp = 0;

X[2] = temp + X[1];

Zero-register example

...

offline
transform

X[2] = 0 + X[1];
evaluate when

enc[20] ̸= enc[10]

Sub-optimal residual

X[2] = X[0] + X[1];evaluate when
enc[20] = enc[10]

11/20

title



Opcode-Sensitive Analyses

▶ Difference between online and offline is knowledge of the
opcode value.
▶ What if we encoded that within the analysis domain?

▶ Use an opcode-sensitive analysis:
Given an abstract domain (A,⊏) and tf : Stmt→ A→ A,
derive (Opcode→ A,⊏op) where

x ⊏op y ≡ ∀i ∈ Opcode • (x(i) ⊏ y(i))
tfop(s)(x) ≡ λop • tf(s[enc← op])(x(op))

▶ Objects of type Opcode→ A are efficiently represented as
multi-terminal binary decision diagrams (MTBDD).

12/20

title



Example — Value Analysis

if enc[20] == enc[10] then
temp = X[0];

else
temp = 0;

X[2] = temp + X[1];

enc[20]

enc[10]enc[10]

0⊤

01

1
00

1

▶ MTBDD represents objects of
type Opcode→ A.
Here, A = {⊥, 0, 1, . . . ,⊤}.

▶ Bits of enc are decision nodes
and values of A are terminals.

▶ Static ordering of decision
nodes from most-significant to
least-significant bits.

13/20

title



Opcode-Sensitive Analyses — Applications

▶ Results used to transform lifter to produce more concise
semantics.

▶ For conditionally-applicable simplifications, split statements by
inserting a branch into applicable and non-applicable cases.
▶ Dead-code elimination.
▶ Copy propagation.
▶ Constant propagation.

▶ Previous slide’s example becomes:
X[2] = (if enc[20] == enc[10] then (X[0] + X[1]) else X[1]);

14/20

title



Evaluation — Compilation & Lifting Times

▶ Offline-generated lifters are much faster at lift-time, at the
expense of compilation time.

Lifter Time (s)
Online OCaml 4.14 2.60
Offline OCaml 4.14 63.22
Offline Scala 3.3 95.11
Offline C++ 73.35

Table: Compilation times.

Avg. time (ms)
Class Tested Online Offline
Branch 189 1.342 0.011
Float 3,846 1.400 0.023
Integer 12,667 1.360 0.023
Memory 29,397 3.762 0.039
Vector 106,863 2.745 0.052

Table: Per-instruction lift time.

15/20

title



Evaluation — Semantics Comparison
▶ Validated using differential testing against original spec.
▶ Produced residual programs are semantically equivalent.
▶ Comparing outputs produced by the offline and online lifters,

32% of the 152,703 tested instructions are textually identical.

Exprs
online offline

mean max mean max
Branch 15.40 19 18.20 27
Float 31.53 53 33.13 80
Integer 245.10 5,183 273.69 5,558
Memory 146.64 1,855 147.06 1,855
Vector 345.43 4,447 391.78 3,879

Table: Online and offline instruction complexity by instruction class.16/20

title



Evaluation — Verification Performance

▶ Tested with assertions generated by BASIL, an
in-development binary analysis tool.

▶ Weakest-precondition assertions passed to Boogie then Z3.

Verification time (s) Resource count
mean max std. dev mean max std dev

Offline 0.05 8.12 0.17 29,078 5,380,601 191,142
Online 0.04 1.44 0.09 21,989 4,867,142 181,745

Table: Solving times by SMT solver.

17/20

title



Conclusion

▶ Developed offline partial evaluation as an extension to ASLp.
▶ Generates standalone lifters from ARM’s ISA semantics.
▶ Opcode-sensitive analyses and transformations.
▶ Lifter can be translated to arbitrary languages and IRs.

18/20

title



Future Work

▶ Implementing further simplifications on the offline lifter.
▶ More formal verification of the generation pipeline (e.g.

translation validation).
▶ Deriving more useful tools from the architecture specification.
▶ Exploring additional architecture specifications (e.g. Intel).

19/20

title



Thank you!
https://github.com/UQ-PAC/aslp

“uq pac aslp”

https://doi.org/10.5281/zenodo.13219112
“lift offline artifact”

https://katrinafyi.github.io/aslp-web/
“aslp web arm”

20/20

https://github.com/UQ-PAC/aslp
https://doi.org/10.5281/zenodo.13219112
https://katrinafyi.github.io/aslp-web/

