OFFICIAL

”,; Australian Government

Department of Defence
Defence Science and Technology Group

Lift-offline: Instruction lifter generators

SAS 2024, October 2024

Nicholas Coughlin, Alistair Michael, and Kait Lam
DST Group / The University of Queensland

To defend Australia and its national interests in order
to advance Australia’s security and prosperity “

www.defence.gov.au .

OFFICIAL

 - Lift-offline, an application of offline partial evaluation to generate lifters for an instruction-set architecture.
 - Joint work

Background

P Reasoning about assembly code requires accurate, trustworthy
models of the instruction-set architecture (ISA).

» Existing decompilers use hand-written semantics with limited
correctness arguments.

» ARM publishes a machine-readable specification of its ISA
(Reid 2016), expressed in ARM Specification Language (ASL).

» However, formal models remain difficult to integrate with
analysis tools.

2/20

- due to differences in language, IR, ...

Previous Work

» Previous work: ASLp, an online partial evaluator for ASL
(Lam & Coughlin 2023)
» Simplifies given a known instruction encoding (opcode).
> Validated by differential testing against an ASL interpreter.
» Found bugs in the instruction semantics of RetDec and Remill.

Simple architecture

specification Residual when

if enc AND 0x80 then enc = 0x8F
else simplify given
R3 =R1-R2 enc = Ox8F

3/20

Problems Arising

» Online partial evaluation requires traversing the specification
for each opcode.

» Several disadvantages:
» Tight coupling between downstream projects and ASLp +
OCaml runtime + ASL specification.
» Difficult to reason universally about the produced semantics.

» Difficult to integrate with analysis tools (different languages
and different IRs).

4/20

Observations

Aim: generate a standalone lifter in the style of hand-written
lifters (a lifter is a program which returns instruction semantics,
given an opcode).

» ASL specification is structurally similar to a lifter.
> However, a lifter will distinguish two stages:

» Lift-time: execution of the lifter to generate semantics.
» Run-time: execution of the semantics to produce side-effects.

» ASL specification does not differentiate the two, but we can
deduce them.

5/20

6/20

Comparison — ASL vs RetDec

Example: add <Xd>, <Xn>, <Xm>.

bits(datasize) result; bits(4) flags;

bits(datasize) operandl = X][n];
bits(datasize) operand2 = X[m];

(result, flags) = AddWithCarry(
operandl, operand2, '0');
X[d] = result;

void translateAdd(cs_insn* i,
cs_arm64* ai, llvm::IRBuilder<>& irb)

std::tie(opl, op2) = loadOpBinary(ai);
auto *val = irb.CreateAdd(opl, op2);

storeOp(ai->operands|[0], val);

An Offline Approach

Offline partial evaluation to generate a lifter ahead-of-time in two
phases.

1. Binding-time analysis:
» Mark static values (e.g. opcode, constants) as lift-time.
» Propagate and mark computations as lift-time if all inputs are
lift-time, otherwise run-time.

2. Offline transformation:

» For lift-time operations, no change needed.
» For run-time operations, instead produce function calls which
construct an AST.

7/20

Offline vs Online Partial Evaluation

Abstractly, difference between online and offline is akin to currying:

online : Spec x Opcode — Sem, offline : Spec — (Opcode — Sem) .

) o Lifter
Simple specification (specys,) Residual when

if enc AND 0x80 then enc = Ox8F
R3 =Rl +R2 : R3=RL + R2}------- 5

else online transform A
R3 =R1-R2 given enc = Ox8F

offline evaluate given diagram continues
transform enc = Ox8F to right...

if enc AND 0x80 then

gen_store("R3", gen_add(gen_load("R1"), gen_load("R2"))) | >

else
gen_store("R3", gen_sub(gen_load("R1"), gen_load("R2")))

Generated lifter
Correctness:

/20 Vop e specas (op) =~ online(op, specpg;) =~ offline(specas;)(op).

Offline vs Online Partial Evaluation (cont.)

Residual when
enc = Ox8F translate | %1 = load i64, ptr @X1
to LLVM

evaluate given

\ enc = Ox8F

if enc AND 0x80 then
gen_store("R3", gen_add(...))

¥ R3 =R1 + R2

evaluate given enc = 0x8F
and irb = LLVM

%2 = load i64, ptr @X2
%3 = add i64 %1, %2
store 164 %3, ptr @X3

AN

else
gen_store("R3", gen_sub(...))

Generated lifter

9/20

translate
to C++

~

if (enc & 0x80) {
irb.CreateStore(r3, irb.CreateAdd(...));

} else {
irb.CreateStore(r3, irb.CreateSub(...));
}

Generated lifter in C++

Translating

» Generated lifter represents two stages of execution within the
same ASL program.

Lift-time Run-time (deferred)
Literal 0 gen_int("0")
Addition | x +y gen_add(x, y)
Variable | bits(64) x; x = decl_bv("x", 64);
Branch | if c then telse f (t,fj) = gen_branch(c)

» Translating to different lift-time languages is only a syntactic
transformation.

» One lifter can target different run-time languages (e.g. by
polymorphism or duck typing).

10/20

Refining Offline Partial Evaluation

» Online partial evaluation is extremely powerful, due to precise
knowledge of the opcode.

» Post-processing can clean up many sub-optimal structures.
» Offline residuals are less amenable to post-processing.

» Noticeable over-approximation.
» Simplifications based on algebraic rules are less effective.

evaluate when ’X[Q] = X[0] + X[1]; ‘
enc[20] = enc[10]

if enc[20] == enc[10] then

offline
temp = X[0]; transform
else
temp = 0;

X[2] = temp + X[1]; evaluate when

enc[20] # enc[10] ’X[2] =0+ X[1]; ‘

Zero-register example

Sub-optimal residual

11/20

Opcode-Sensitive Analyses

» Difference between online and offline is knowledge of the
opcode value.
» What if we encoded that within the analysis domain?

» Use an opcode-sensitive analysis:
Given an abstract domain (A,C) and tf : Stmt — A — A,
derive (Opcode — A, Cop) Where

X Copy = Vi € Opcode e (x(i) T y(i))
tfop(s)(x) = Aop e tf(s[enc «<— op])(x(op))

» Objects of type Opcode — A are efficiently represented as
multi-terminal binary decision diagrams (MTBDD).

12/20

Example — Value Analysis

if enc[20] == enc[10] then

temp = X]0];
else

temp = 0; » MTBDD represents objects of
X[2] = temp + X[1J: type Opcode — A.

Here, A={1,0,1,..., T}
» Bits of enc are decision nodes
and values of A are terminals.

1/ \0
» Static ordering of decision
00 nodes from most-significant to
least-significant bits.
1] 11

]

[0]

13/20

Opcode-Sensitive Analyses — Applications

» Results used to transform lifter to produce more concise
semantics.
» For conditionally-applicable simplifications, split statements by
inserting a branch into applicable and non-applicable cases.
» Dead-code elimination.
» Copy propagation.
> Constant propagation.
» Previous slide's example becomes:
X[2] = (if enc[20] == enc[10] then (X[0] + X][1]) else X[1]);

14/20

Evaluation — Compilation & Lifting Times

15/20

» Offline-generated lifters are much faster at lift-time, at the
expense of compilation time.

Avg. time (ms)

Lifter Time (s)
Online OCaml 4.14 2.60
Offline OCaml 4.14 63.22
Offline Scala 3.3 95.11
Offline C++ 73.35

Class Tested Online \ Offline
Branch 189 1.342 0.011
Float 3,846 1.400 0.023
Integer 12,667 1.360 0.023
Memory 29,397 3.762 0.039
Vector 106,863 2.745 0.052

Table: Compilation times.

Table: Per-instruction lift time.

Evaluation — Semantics Comparison
> Validated using differential testing against original spec.
» Produced residual programs are semantically equivalent.

» Comparing outputs produced by the offline and online lifters,
32% of the 152,703 tested instructions are textually identical.

Exprs
online offline
mean max mean max

Branch 15.40 19 | 18.20 27
Float 31.53 53 | 33.13 80
Integer | 245.10 | 5,183 | 273.69 | 5,558
Memory | 146.64 | 1,855 | 147.06 | 1,855
Vector 34543 | 4,447 | 391.78 | 3,879

16/20 Table: Online and offline instruction complexity by instruction class.

Evaluation — Verification Performance

> Tested with assertions generated by BASIL, an
in-development binary analysis tool.

P> Weakest-precondition assertions passed to Boogie then Z3.

Verification time (s) Resource count

mean max std. dev mean max std dev

Offline 0.05 8.12 0.17 | 29,078 5,380,601 191,142
Online 0.04 1.44 0.09 | 21,989 4,867,142 181,745

Table: Solving times by SMT solver.

17/20

Conclusion

» Developed offline partial evaluation as an extension to ASLp.
» Generates standalone lifters from ARM'’s ISA semantics.
» Opcode-sensitive analyses and transformations.

» Lifter can be translated to arbitrary languages and IRs.

18/20

Future Work

» Implementing further simplifications on the offline lifter.

» More formal verification of the generation pipeline (e.g.
translation validation).

» Deriving more useful tools from the architecture specification.
» Exploring additional architecture specifications (e.g. Intel).

19/20

Thank you!

https://github.com/UQ-PAC/aslp
“uq pac aslp”

https://doi.org/10.5281/zenodo.13219112
“lift offline artifact”

https://katrinafyi.github.io/aslp-web/
“aslp web arm”

20/20

https://github.com/UQ-PAC/aslp
https://doi.org/10.5281/zenodo.13219112
https://katrinafyi.github.io/aslp-web/

